Advertisement

Interface specific variations in the steady-state optical properties of polyfluorene thin films

  • Hyeunseok Cheun
  • Frank Galbrecht
  • Benjamin Nehls
  • Ullrich Scherf
  • Michael J. Winokur
Article

Abstract

The top and bottom interfaces of spin cast poly(di-n-octylfluorene) (PF8) and poly[bis(2-ethylhex-yl)fluorene] (PF2/6) films are investigated by optical absorption and emission spectroscopy. In this study both the pure polyfluorene homopolymers and random copolymers comprised of linear di-n-octyl (F8) and the branched bis(2-ethylhexyl) (F2/6) units are used. PF2/6 is noted for forming a single conformationally disordered helix whereas PF8 adopts a number of near-planar conformational isomers. PF2/6, PF8 and their copolymers form asymmetric films in which the local structure at or near the top and bottom interfaces are distinctly different. This asymmetry is least apparent in pure PF2/6 films but increases in F8 containing polymers. In polymers containing a large fraction of F2/6 monomers the substrate-polymer side exhibits chains with slightly improved intrachain structural order and also increased green band emission. The effects of thermal and solvent vapor annealing are also reported.

Keywords

Vibronic Band Polyfluorene Bottom Interface Green Band Emission Spin Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Grant support by the Research Corporation (HC and MJW) is gratefully acknowledged. MJW thanks David Huber for many insightful discussions. We thank Adam Hahn for assistance in acquiring the optical data.

References

  1. 1.
    J. Cornil, D. Beljonne, J.P. Calbert, J.L. Brédas, Adv. Mater. 13, 1053 (2001)CrossRefGoogle Scholar
  2. 2.
    I.D.W. Samuel, Phil. Trans. R. Soc. Lond. A 358, 193 (2000)MATHCrossRefADSGoogle Scholar
  3. 3.
    S. Forrest, P. Burrows, M. Thompson, IEEE Spectrum. 37, 29 (2000)CrossRefGoogle Scholar
  4. 4.
    S.R. Forrest, Nature. 428, 918 (2004)CrossRefADSGoogle Scholar
  5. 5.
    H. Sirringhaus et al., Appl. Phys. Lett. 77, 406 (2000)CrossRefADSGoogle Scholar
  6. 6.
    H. Cheun, B. Tanto, W. Chunwachirasiri, B. Larson, M. J. Winokur, Appl. Phys. Lett. 84, 22 (2004)CrossRefADSGoogle Scholar
  7. 7.
    R.J. Kline, M.D. McGehee, Poly. Rev. 46, 27 (2006)CrossRefGoogle Scholar
  8. 8.
    M.E. Caruso, S. Lattante, R. Cingolani, M. Anni, Appl. Phys. Lett. 88, 181906 (2006)CrossRefADSGoogle Scholar
  9. 9.
    M.J. Banach, R.H. Friend, H. Sirringhaus, Macromolecules 36, 2838 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Y. Jung, T.Y. Cho, D.Y. Yoon, C.W. Frank, J. Luning, Macromolecules 38, 867 (2005)CrossRefADSGoogle Scholar
  11. 11.
    L.R. Pattison, A. Hexemer, E.J. Kramer, P.M. Petroff, D.A. Fischer, Macromolecules 39, 2225 (2006)CrossRefADSGoogle Scholar
  12. 12.
    R.J. Kline, M.D. Mcgehee, M.F. Toney, Nat. Mater. 5, 222 (2006)CrossRefADSGoogle Scholar
  13. 13.
    D.H. Kim, Y. Jang, Y.D. Park, K. Cho, Macromolecules 39, 5843 (2006)CrossRefADSGoogle Scholar
  14. 14.
    M. Leclerc, J. Polym. Sci. A 39, 2867 (2001)CrossRefGoogle Scholar
  15. 15.
    D. Neher, Macro. Rapid Commun. 22, 1366 (2001)Google Scholar
  16. 16.
    U. Scherf, E.J.W. List, Adv. Mater. 14, 477 (2002)CrossRefGoogle Scholar
  17. 17.
    M.J. Winokur, W. Chunwaschirasiri, J. Polym. Sci. 41, 2630 (2003)Google Scholar
  18. 18.
    M. Grell, D.D.C. Bradley, G. Ungar, J. Hill, K.S. Whitehead, Macromolecules 32, 5810 (1999)CrossRefADSGoogle Scholar
  19. 19.
    M. Grell et al., Syth. Met. 111, 579 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Kawana et al., Polymer 43, 1907 (2002)CrossRefGoogle Scholar
  21. 21.
    M.J. Winokur, J. Slinker, D.L. Huber, Phys. Rev. B 67, 184106 (2003)CrossRefADSGoogle Scholar
  22. 22.
    M. Knaapila et al., J. Phys. Chem. 107, 12425 (2003)Google Scholar
  23. 23.
    G. Lieser et al., Macromolecules 33, 4490 (2000)CrossRefADSGoogle Scholar
  24. 24.
    B. Tanto, S. Guha, C.M. Martin, U. Scherf, M.J. Winokur, Macromolecules 37, 9438 (2004)CrossRefADSGoogle Scholar
  25. 25.
    M. Knaapila, M. Torkkeli, A.P. Monkman, Macromolecules 40, 3610 (2007)CrossRefADSGoogle Scholar
  26. 26.
    A.J. Cadby et al., Phys. Rev. B 62, 15604 (2000)CrossRefADSGoogle Scholar
  27. 27.
    S.H. Chen, H.L. Chou, A.C. Su, S.A. Chen, Macromolecules 37, 6833 (2004)CrossRefADSGoogle Scholar
  28. 28.
    W. Chunwaschirasiri, B. Tanto, D.L. Huber, M.J. Winokur, Phys. Rev. Lett. 94, 107402 (2005)PubMedCrossRefADSGoogle Scholar
  29. 29.
    W.C. Tsoi et al., Adv. Funct. Mater. 18, 600 (2008)CrossRefGoogle Scholar
  30. 30.
    B.P. Lyons, A.P. Monkman, J. Appl. Phys. 96, 4735 (2004)CrossRefADSGoogle Scholar
  31. 31.
    M. Grell, D.D.C. Bradley, Adv. Mater. 11, 895 (1999)CrossRefGoogle Scholar
  32. 32.
    M.J. Winokur, H. Cheun, M. Knaapila, A.P. Monkman, U. Scherf, Phys. Rev. B 75, 113202 (2007)CrossRefADSGoogle Scholar
  33. 33.
    E.J.W. List, R. Guentner, P.S. de Freitas, U. Scherf, Adv. Mater. 14, 374 (2002)CrossRefGoogle Scholar
  34. 34.
    L. Romaner et al., Adv. Funct. Mater. 13, 597 (2003)CrossRefGoogle Scholar
  35. 35.
    D.H. Kim, Y. Jang, Y.D. Park, K. Cho, Macromolecules 39, 5843 (2006)CrossRefADSGoogle Scholar
  36. 36.
    C. Rothe, F. Galbrecht, U. Scherf, A. Monkman, Adv. Mater. 18, 2137 (2006)CrossRefGoogle Scholar
  37. 37.
    G. Ryu, R. Xia, D.D.C. Bradley, J. Phys. Condens. Matter 19, 056205 (2007)CrossRefADSGoogle Scholar
  38. 38.
    H. Cheun, F. Galbrecht, B.S. Nehls, U. Scherf, M.J. Winokur, J. Lumin. 122–123, 212 (2006)Google Scholar
  39. 39.
    M. Ariu et al., J. Phys. Condens. Matter 14, 9975 (2002)CrossRefADSGoogle Scholar
  40. 40.
    A.L.T. Khan, P. Sreearunothai, L.M. Herz, M.J. Banach, A. Köhler, Phys. Rev. B 69, 85201 (2004)CrossRefADSGoogle Scholar
  41. 41.
    J. Gierschner, H.G. Mack, L. Luer, D. Oelkrug, J. Chem. Phys. 116, 8596 (2002)CrossRefADSGoogle Scholar
  42. 42.
    H.J. Snaith, R.H. Friend, Thin Solid Films 451–452, 567 (2004)CrossRefGoogle Scholar
  43. 43.
    P.J. Hamer et al., Phil. Mag. B 73, 367 (1996)CrossRefGoogle Scholar
  44. 44.
    M. Sims et al., Adv. Func. Mater. 14, 765 (2004)CrossRefGoogle Scholar
  45. 45.
    H. Cheun et al., J. Appl. Phys. 100, 073510 (2006)CrossRefADSGoogle Scholar
  46. 46.
    M. Sferrazza et al., Phys. Rev. Lett. 81, 5173 (1998)CrossRefADSGoogle Scholar
  47. 47.
    A.F. Routh, W.B. Russel, AIchE J. 44, 2088 (1998)CrossRefGoogle Scholar
  48. 48.
    A.M. Higgins et al., J. Phys. Condens. Matter 17, 1319 (2005)CrossRefADSGoogle Scholar
  49. 49.
    P.K.H. Ho et al., Adv. Mater. 19, 215 (2007)CrossRefADSGoogle Scholar
  50. 50.
    C.W. Frank et al., Science 273, 912 (1996)PubMedCrossRefADSGoogle Scholar
  51. 51.
    S.H. Chen, A.C. Su, S.A. Chen, J. Phys. Chem. B 20, 10067 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hyeunseok Cheun
    • 1
  • Frank Galbrecht
    • 2
  • Benjamin Nehls
    • 2
    • 3
  • Ullrich Scherf
    • 2
  • Michael J. Winokur
    • 4
  1. 1.Department of Materials ScienceUniversity of WisconsinMadisonUSA
  2. 2.Makromolekulare ChemieBergische UniversitätWuppertalGermany
  3. 3.BASF AGGlobal Polymer Research - FoamsLudwigshafenGermany
  4. 4.Department of PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations