Advertisement

Einstein relation in carbon nanotubes and quantum wires of nonlinear optical and optoelectronic materials

  • Debashis De
  • Kamakhya Prasad Ghatak
Article
  • 62 Downloads

Abstract

We study the Einstein relation for the diffusivity-to-mobility ratio (DMR) in carbon nanotubes (CNTs) and quantum wires (QWs) of nonlinear optical and optoelectronic materials. The respective DMR in QWs exhibits increasing quantum steps with increasing electron statistics. In CNTs, the DMR exhibits periodic oscillations with increasing carrier degeneracy and the nature is radically different as compared with the corresponding DMR of QWs since they emphasize the different signatures of the two entirely different one dimensional nanostructured systems. In addition, we have suggested an experimental method of determining the DMR for CNTs and QWs having arbitrary dispersion laws.

Keywords

Quantum Confinement Einstein Relation Bulk Specimen Nonlinear Optical Material Crystal Field Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  2. 2.
    S. Bhattacharya, D. De, S. Chowdhury, S. Karmakar, D.K. Basu, S. Pahari, K.P. Ghatak, J. Comput. Theory Nano. 3, 280 (2006)Google Scholar
  3. 3.
    H. Kroemer, IEEE Trans. Electron Devices 25, 805 (1978)Google Scholar
  4. 4.
    M. Mondal, N. Chattopadhyay, K.P. Ghatak, J. Low Temp. Phys. 73, 321 (1988)CrossRefADSGoogle Scholar
  5. 5.
    K.P. Ghatak, D. Bhattacharyya, Phys. Lett. A. 184, 366 (1994)CrossRefADSGoogle Scholar
  6. 6.
    L.J. Singh, S. Choudhury, S.S. Roy, K.P. Ghatak, Electr. Eng. 87, 1 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Mondal, K.P Ghatak, J. Phys. C. (Solid State) 20, 1671 (1987); Thin Solid Film 148, 219 (1987); J. Appl. Phys. 70, 1277 (1992)Google Scholar
  8. 8.
    M. Mondal, K.P Ghatak, Ann. der. Physik 46, 502 (1989)CrossRefADSGoogle Scholar
  9. 9.
    G.D. Hatchel, A.E. Ruchli, IEEE Trans. Electron. Devices, 15, 437 (1968); S.N. Mohammed, J. Phys. C: Solid State Phys. 13, 2685 (1980)Google Scholar
  10. 10.
    X. Yang, J. Ni, Phys. Rev. B 72, 195426 (2005)CrossRefADSGoogle Scholar
  11. 11.
    I.M. Tsidilkovskii, Band Structures of Compounds (Pergamon Press, London, 1982); B. Mitra, K.P. Ghatak, Phys. Lett. 141A, 81 (1989)Google Scholar
  12. 12.
    O. Madelung, Semiconductors Data Handbook, 3rd edn. (Springer 2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringWest Bengal University of TechnologySalt Lake City, KolkataIndia
  2. 2.Department of Electronic ScienceThe University of CalcuttaKolkataIndia

Personalised recommendations