Advertisement

Dislocation-related photoluminescence from processed Si

  • Andrzej Misiuk
  • Konstantin S. Zhuravlev
  • Wojciech Jung
  • Marek Prujszczyk
  • Edward A. Steinman
Article

Abstract

Dislocation-related photoluminescence (PL) from oxygen containing Czochralski silicon (Cz-Si) processed at up to 1,400 K (HT) under atmospheric and enhanced Ar pressures (HP, up to 1.2 GPa) has been investigated. Appropriate processing of Cz-Si results in a creation of oxygen precipitates and of related defects, e.g., dislocations. Depending on processing conditions, the dislocation-related PL lines at about 0.81 and 0.87 eV are of the highest intensity while PL peaks also at 0.84 and 0.94 eV. The subsequent treatments of processed Cz-Si under pulse HP up to 2 GPa at room temperature affect PL intensity, also because of annihilation of non-radiative recombination centers formed at HT–(HP). Specific HT–HP treatments, influencing a creation of oxygen precipitates and a creation/annihilation of non-radiative recombination centers, make possible to tailor PL from Cz-Si.

Keywords

Oxygen Precipitate Direct Wafer Bonding Czochralski Grown Silicon Specific High Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Dr. T. M. Burbaev and Dr. V. V. Kurbatov from the Physical Institute, RAS, Moscow, Russia and to M. Sc. B. Surma from the Institute of Electronic Materials Technology, Warsaw, Poland for some experimental data.

References

  1. 1.
    E.A. Steinman, V.V. Kveder, V.I. Vdovin, H.G. Grimmeiss, Solid State Phenom. 69–70, 23 (1999)Google Scholar
  2. 2.
    M. Kittler, M. Reiche, W. Seifert, X. Yu, T. Arguirov, O.F. Vyvenko, T. Mchelidze, T. Wilhelm, in ECS Transactions, The Electrochemical Society, 3(4) (2006), p. 429. doi: 10.1149/1.2355777
  3. 3.
    E.A. Steinman, A.N. Tereshchenko, V.I. Vdovin, A. Misiuk, Solid State Phenom. 108–109, 773 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Misiuk, H.B. Surma, M. Lopez, Int. J. Inorg. Mater. 3, 1197 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Misiuk, Phys. Status Solidi A 171, 191 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Misiuk, B. Surma, J. Bak-Misiuk, Eur. Phys. J. Appl. Phys. 27, 301 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Misiuk, J. Wojciechowski, J. Adamczewska, J. Jablonski, J. Bak-Misiuk, A. Moroz, in Proceed. 32 Int. Wiss. Kolloq., Ilmenau, 1987, Heft 4, p. 85Google Scholar
  8. 8.
    A. Misiuk, Mater. Phys. Mech. 1, 119 (2000)Google Scholar
  9. 9.
    A. Misiuk, H.B. Surma, J. Jun, J. Bak-Misiuk, J. Domagala, I.V. Antonova, V.P. Popov, A. Romano-Rodriquez, M. Lopez, J. Alloys Compd. 286, 258 (1999)CrossRefGoogle Scholar
  10. 10.
    S. Binetti, A. Le Donne, V.V. Emtsev, S. Pizzini, J. Appl. Phys. 94, 7476 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Pizzini, M. Acciarri, E. Leoni, A Le Donne, Phys. Status Solidi B 222, 141 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Acciarri, C. Cirelli, S. Pizzini, S. Binetti, A. Castaldini, A. Cavallini, J. Phys.: Condens. Matter 14, 13223 (2002)CrossRefGoogle Scholar
  13. 13.
    S.N. Aglaumov, V.D. Skupov, Vysokochistye Veshchestva 6, 137 (1993)Google Scholar
  14. 14.
    S. Senkader, P.R. Wilslaw, R.J. Falster, J. Appl. Phys. 89, 4803 (2001)CrossRefGoogle Scholar
  15. 15.
    E.A. Steinman, Phys. Status Solidi C 2, 1837 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Andrzej Misiuk
    • 1
  • Konstantin S. Zhuravlev
    • 2
  • Wojciech Jung
    • 1
  • Marek Prujszczyk
    • 1
  • Edward A. Steinman
    • 3
  1. 1.Institute of Electron TechnologyWarsawPoland
  2. 2.Institute of Semiconductor PhysicsRASNovosibirskRussia
  3. 3.Institute of Solid State PhysicsRASChernogolovkaRussia

Personalised recommendations