Advertisement

The effects of oxygen vacancies on the electronic properties of V2O5−x

  • Zhi-Yang Li
  • Qi-Hui Wu
Article

Abstract

The influences of oxygen vacancies on the electronic properties of V2O5−x have been investigated by photoelectron spectroscopy and first principle calculations. Photoelectron spectroscopic data suggested that the vanadium (V) ions are gradually reduced to lower oxidation states with the increases of oxygen (O) vacancy density. Simultaneously, the formation of O vacancies leads to a decrease in the work function of V2O5−x . Theoretical calculations further prove that the formation of O vacancies would cause a reduction in the charge state of V ions and a decrease of work function. The electronic structures of V ions are strongly modified by the removal of O ions nearby due to electron transfer to the 3d orbitals of the V ions.

Keywords

V2O5 Work Function Partial Charge Vanadium Oxide Vanadium Pentoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the financial support of this work by National Natural Science Foundation of China (NO:20603028), the Project of Young Talents Innovation of Fujian Province (NO: 2005J005) and the Project of New Century Excellent Talent of Fujian Province.

References

  1. 1.
    Q.-H. Wu, A. Thissen, W. Jaegermann, Surf. Sci. 578, 203 (2005)CrossRefGoogle Scholar
  2. 2.
    Q.-H. Wu, A. Thissen, W. Jaegermann, Solid State Ionics 167, 155 (2004)CrossRefGoogle Scholar
  3. 3.
    Q.-H. Wu, A. Thissen, W. Jaegermann, M. Liu, Appl. Surf. Sci. 236, 473 (2004)CrossRefGoogle Scholar
  4. 4.
    Q.-H. Wu, A. Thissen, W. Jaegermann, Appl. Surf. Sci. 250, 57 (2005)CrossRefGoogle Scholar
  5. 5.
    Q.-H. Wu, A. Thissen, W. Jaegermann, Appl. Surf. Sci. 252, 1801 (2005)CrossRefGoogle Scholar
  6. 6.
    Q.-H. Wu, A. Thissen, W. Jaegermann, Appl. Surf. Sci. 253, 1713 (2006)CrossRefGoogle Scholar
  7. 7.
    Q.-H. Wu, Surf. Interface Anal. 38, 1179 (2006)CrossRefGoogle Scholar
  8. 8.
    M.A. Banares, Catal. Today 51, 319 (1999)CrossRefGoogle Scholar
  9. 9.
    B.M. Weckhuysen, D.E. Keller, Catal. Today 78, 25 (2003)CrossRefGoogle Scholar
  10. 10.
    P. Mars, D.W. van Krevelen, Spec. Suppl. Chem. Eng. Sci. 3, 41 (1954)Google Scholar
  11. 11.
    K. Chen, E. Iglesia, A.T. Bell, J. Catal. 192, 197 (2000)CrossRefGoogle Scholar
  12. 12.
    M.V. Ganduglia-Pirovano, J. Sauer, Phys. Rev. B 70, 045422 (2004)CrossRefGoogle Scholar
  13. 13.
    M.V. Ganduglia-Pirovano, J. Sauer, J. Phys. Chem. B 109, 374 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Laubach, P.C. Schmidt, A. Thißen, F.J. Fernandez-Madrigal, Q.-H. Wu, W. Jaegermann, M. Klemm, S. Horn, Phys. Chem. Chem. Phys. 9, 2564 (2007)CrossRefGoogle Scholar
  15. 15.
    G.A. Sawatzky, D. Post, Phys. Rev. B 20, 1546 (1979)CrossRefGoogle Scholar
  16. 16.
    D.W. Bullett, J. Phys. C 13, L595 (1980)CrossRefGoogle Scholar
  17. 17.
    Q.-H. Wu, A. Thissen, W. Jaegermann, M. Schuz, P.C. Schmidt, Chem. Phys. Lett. 430, 309 (2006)CrossRefGoogle Scholar
  18. 18.
    A.M. Ferrati, G. Paccioni, J. Phys. Chem. 99, 17010 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsXiamen UniversityXiamenChina
  2. 2.Institute of Physical and Theoretical ChemistryBonn UniversityBonnGermany

Personalised recommendations