Thermal conductivity and nanoindentation hardness of as-prepared and oxidized porous silicon layers

  • Zhenqian Fang
  • Ming Hu
  • Wei Zhang
  • Xurui Zhang
  • Haibo Yang


Porous silicon (PS) offers promising possibilities to be applied as thermal insulating material in thermal effect microsystems for its thermal conductivity (TC) is up to two orders smaller than that of bulk silicon. In order to find a compromise between efficient thermal isolation and good mechanical stability of PS, thermal oxidation of PS is commonly used to tune the mechanical and thermal properties of PS. Both TC and the hardness of as-prepared and oxidized PS have been thoroughly investigated. TC and the hardness of as-prepared and oxidized PS were measured using micro-Raman scattering and nanoindentation, respectively. Experimental results revealed that TC and the hardness of as-prepared PS, exhibiting a strong dependence on the preparing conditions, decrease with increasing porosities. After oxidization at different temperatures, TC of oxidized PS decreases with increasing oxidation temperatures, whereas the hardness increases a lot. PS with a moderate porosity of 73.4% oxidized at 600 °C has a compromise between low TC [2.100 W/(m K)] and high hardness (∼1.160 GPa). So this process finalizes this kind of oxidized PS to be used as a suitable thermal insulation substrate in thermal effect microsystems.


Porous Silicon Porous Silicon Layer Contact Depth Hardness Curve Porous Silicon Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China No. 60371030 and Natural Science Foundation of Tianjin of China No. 023603811. The authors would like especially to thank Professor Jianyuan Yu at Tsinghua University and Professor Dejun Li at Tianjin Normal University for their constant supports, suggestions and helpful discussion in micro-Raman scattering spectroscopy and nanoindentation measurements.


  1. 1.
    G. Gesele, J. Linsmeier, V. Drach, J. Fricke, R. Arens-fischer, J. Phys. D: Appl. Phys. 30, 2911 (1997)CrossRefGoogle Scholar
  2. 2.
    S. Perichon, V. Lysenko, P. Roussel, B. Remaki, B. Champagnon, D. Barbier, P. Pinard, Sens. Actuators A 85, 335 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Tsamis, A.G. Nassiopoulou, A. Tserepi, Sens. Actuators B 95, 78 (2003)CrossRefGoogle Scholar
  4. 4.
    V. Lysenko, S. Perichon, B. Remaki, D. Barbier, Sens. Actuators A 99, 13 (2002)CrossRefGoogle Scholar
  5. 5.
    R. Triantafyllopoulou, S. Chatzandroulis, C. Tsamis, A. Tserepi, Microelectronic Eng. 83, 1189 (2006)CrossRefGoogle Scholar
  6. 6.
    S.J. Patil, D.S. Bodas, A.S. Ethiraj, R.C. Purandare, G.J. Phatak, S.K. Kulkarni, S.A. Gangal, Vacuum 65, 91 (2002)CrossRefGoogle Scholar
  7. 7.
    G. Benedetto, L. Boarino, R. Spagnolo, Appl. Phys. A. 64, 155 (1997)CrossRefGoogle Scholar
  8. 8.
    V. Lysenko, S. Perichon, B. Remaki, D. Barbier, B. Champagnon, J. Appl. Phys. 86, 6841 (1999)CrossRefGoogle Scholar
  9. 9.
    Q. Shen, T. Toyoda, Rev. Sci. Instrum. 74, 601 (2003)CrossRefGoogle Scholar
  10. 10.
    A. Wolf, R. Brendel, Thin Solid Films 513, 385 (2006)CrossRefGoogle Scholar
  11. 11.
    T. Pichonat, B. Gauthier-Manuel, J. Membr. Sci. 280, 494 (2006)CrossRefGoogle Scholar
  12. 12.
    P.H. Roussel, V. Lysenko, B. Remaki, G. Delhomme, A. Dittmar, D. Barbier, Sens. Actuators. 74, 100 (1999)CrossRefGoogle Scholar
  13. 13.
    M. Okuda, S. Ohkubo, Thin Solid Films. 213, 176 (1992)CrossRefGoogle Scholar
  14. 14.
    F.R. Brotzen, P.J. Loos, D. Pbrady, Thin Solid Films 207, 197 (1992)CrossRefGoogle Scholar
  15. 15.
    E. Monticone, L. Boarino, G. Lerondel, R. Steni, G. Amato, V. Lacquaniti, Appl. Sur. Sci. 142, 267 (1999)CrossRefGoogle Scholar
  16. 16.
    U. Bernini, S. Lettieri, P. Maddalena, R. Vitiello, G. Difrancia, J. Phys. Condens. Matter. 13, 1141 (2001)CrossRefGoogle Scholar
  17. 17.
    V. Lysenko, S. Volz, Phys. Stat. Sol. A. 182, R6–R7 (2000)CrossRefGoogle Scholar
  18. 18.
    S.P. Duttagupta, P.M. Fauchet, inProperties of Porous Silicon, ed. by L.T. Canham (INSPEC, London, UK, 1997), p. 132Google Scholar
  19. 19.
    G. Bhagavannarayana, S.N. Sharma, R.K. Sharma, S.T. Lakshmikumar, Mater. Chem. Phys. 97, 442 (2006)CrossRefGoogle Scholar
  20. 20.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)CrossRefGoogle Scholar
  21. 21.
    S. Perichon, V. Lysenko, B. Remaki, B. Champagnon, D. Barbier, J. Appl. Phys. 86, 4700 (1999)CrossRefGoogle Scholar
  22. 22.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  23. 23.
    S. Logothetidis, C. Charitidis, Thin Solid Films 353, 208 (1999)CrossRefGoogle Scholar
  24. 24.
    J. Wang, W.Z. Li, H.D. Li, B. Shi, J.B. Luo, Thin Solid Films 366, 117 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Logothetidis, C. Charitidis, P. Patsalas, Diam. Rel. Mater. 11, 1095 (2002)CrossRefGoogle Scholar
  26. 26.
    L. Clement, S. Lust, M. Mamor, J. Rappich, T. Dittrich, Phys. Stat. Sol. A 202, 1390 (2005)CrossRefGoogle Scholar
  27. 27.
    V. Lysenko, P. Roussel, B. Remaki, G. Delhomme, A. Dittmar, D. Barbier, J. Porous Mater. 7, 177 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhenqian Fang
    • 1
  • Ming Hu
    • 1
  • Wei Zhang
    • 1
  • Xurui Zhang
    • 1
  • Haibo Yang
    • 1
  1. 1.School of Electronic & Information EngineeringTianjin UniversityTianjinChina

Personalised recommendations