Advertisement

Calculated optical transitions in a silicon quantum wire modulated by a quantum dot

  • Xanthippi Zianni
  • Androula G. Nassiopoulou
Article
  • 73 Downloads

Abstract

The photoluminescence lifetimes of Si quantum wires and dots have been previously calculated within a continuum model that takes into account the anisotropy of silicon band structure. Here, we present our calculations on the optical transitions in Si quantum wires modulated by a quantum dot. The geometrical parameters of the buldged wire are appropriate for porous Si and the ground state is localized. The photoluminescence lifetimes are calculated and compared with those of straight wires and dots. The magnitude of the lifetime is sensitive to the structural parameters of the nanostructures. Lifetimes varying from nanoseconds to milliseconds have been obtained. The results of the calculations provide insight to the optical properties of Si nanostructures.

Keywords

Porous Silicon Quantum Wire Straight Wire Silicon Wire Porous Silicon Nanostructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The present work has been co-funded by European Community funds and by National funds (E.P.E.A.E.K.), under the ‘Archimides’ programme.

References

  1. 1.
    D.J. Lockwood, Z.H. Lu, J.M. Baribeau, Phys. Rev. Lett. 76, 539 (1996) PubMedCrossRefADSGoogle Scholar
  2. 2.
    B.V. Kamenev, A.G. Nassiopoulou, J. Appl. Phys. 90, 5735 (2001)CrossRefADSGoogle Scholar
  3. 3.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)CrossRefADSGoogle Scholar
  4. 4.
    C.-Y. Yeh, S.B. Zhang, A. Zunger, Appl. Phys. Lett. 63, 3455 (1993)CrossRefADSGoogle Scholar
  5. 5.
    K.J. Nash in Properties of Porous Silicon (L.T. Canham, IEE INSPEC, London, 1997), p. 216Google Scholar
  6. 6.
    O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Report. 38, 1 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Z. Wu, T. Nakayama, S. Qiao, M. Aono, Appl. Phys. Lett. 74, 3842 (1999)CrossRefADSGoogle Scholar
  8. 8.
    X. Zianni, A.G. Nassiopoulou, Phys. Rev. B 65, 035326 (2002)CrossRefADSGoogle Scholar
  9. 9.
    X. Zianni, A.G. Nassiopoulou, Phys. Rev. B 66, 205323 (2002) CrossRefADSGoogle Scholar
  10. 10.
    S. Horiguchi, Y. Nakajima, Y. Takahashi, M. Tabe, Jpn. J. Appl. Phys. Part 1 34, 5489 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Horiguchi, Superlattices Microstruct. 23, 355 (1998)CrossRefADSGoogle Scholar
  12. 12.
    X. Zianni, A.G. Nassiopoulou, J. Appl. Phys. 100, 074312 (2006)CrossRefADSGoogle Scholar
  13. 13.
    F. Buonocore, D. Ninni, G. Iadonisi, Phys. Stat. Sol. B 225, 343 (2001)CrossRefADSGoogle Scholar
  14. 14.
    M.S. Hybertsen, M. Needels, Phys. Rev. B 48, 4608 (1993)Google Scholar
  15. 15.
    C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 48, 11024 (1993)CrossRefADSGoogle Scholar
  16. 16.
    J. Linnros, N. Lalic, A. Galeckas, V. Grivickas, J.Apl. Phys. 86, 6128 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied SciencesTechnological Educational Institution of ChalkidaPsachnaGreece
  2. 2.Institute of Microelectronics (IMEL), NCSR ‘Demokritos’AthensGreece

Personalised recommendations