Low-temperature sintering and microwave dielectric properties of Ba3Ti4Nb4O21 with MnCO3–CuO

  • Dong Zou
  • Qilong Zhang
  • Hui Yang
  • Manchang Ma


Effects of MnCO3–CuO (for short MC) additives on densification and dielectric properties of Ba3Ti4Nb4O21 ceramics have been investigated. The densification temperature of Ba3Ti4Nb4O21 is greatly reduced from 1280 °C for pure Ba3Ti4Nb4O21 to 950 °C with the presence of MC. This is caused by the liquid phase sintering taking place between MC and Ba3Ti4Nb4O21 during sintering. The dielectric constant and the quality factor decrease with increasing MC additives. At a given amount of sintering additive, the dielectric constant and the quality factor decrease with increasing Mn content in the MC mixture. The Ba3Ti4Nb4O21 ceramics with 1 wt% 0.2MnCO3–0.8CuO sintered at 950 °C for 2 h shows dielectric properties: ε = 66,  ×  f = 13,400 GHz and τ f  = 60 ppm/°C. Also, the material is compatible with Ag electrodes and, therefore, is suitable for LTCC application.


TiO2 Dielectric Property Nb2O5 Microwave Dielectric Property Glass Frit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.L. Huang, R.J. Lin, J.J. Wang, Jpn. J. Appl. Phys. 41, 758 (2002)CrossRefGoogle Scholar
  2. 2.
    C.S. Chen, C.C. Chou, C.S. Chen, I.N. Lin, J. Eur. Ceram. Soc. 24, 1795 (2004)CrossRefGoogle Scholar
  3. 3.
    N. Wang, M.Y. Zhao, W. Li, Z.W. Yin, Ceram. Int. 30, 1017 (2004) CrossRefGoogle Scholar
  4. 4.
    S.H. Ding, X. Yao, L.Y. Zhang, Y. Mao, Ferroelectrics 327, 45 (2005)CrossRefGoogle Scholar
  5. 5.
    H.T. Kim, S.H. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3043 (1999) CrossRefGoogle Scholar
  6. 6.
    Q.L. Zhang, H. Yang, J.L. Zou, H.P. Wang, Mater. Lett. 59, 880 (2005) CrossRefGoogle Scholar
  7. 7.
    J.L. Zou, Q.L. Zhang, H. Yang, H.P. Sun, Jpn. J. Appl. Phys. 45, 4143 (2006) CrossRefGoogle Scholar
  8. 8.
    D.H. Kang, K.C. Nam, H.J. Cha, J. Eur. Ceram. Soc. 26, 2117 (2006) CrossRefGoogle Scholar
  9. 9.
    Q. Zeng, W. Li, J.L. Shi, J.K. Guo, M.W. Zuo, W.J. Wu, J. Am. Ceram. Soc. 89, 1733 (2006) CrossRefGoogle Scholar
  10. 10.
    J.X. Tong, Q.L. Zhang, H. Yang, J.L. Zou, Mater. Lett. 59, 3252 (2005)CrossRefGoogle Scholar
  11. 11.
    W.T. Huang, K.S. Liu, L.W. Chu, G.H. Hsiue, I.N. Lin, J. Eur. Ceram. Soc. 23, 2559 (2003) CrossRefGoogle Scholar
  12. 12.
    M.W. Zuo, W. Li, J.L. Shi, Q. Zeng, Mater. Res. Bull. 41, 1127 (2006) CrossRefGoogle Scholar
  13. 13.
    M.T. Sebastian, J. Mater. Sci. Mater. Electron. 10, 475 (1999)CrossRefGoogle Scholar
  14. 14.
    W.J. Ko, Y.J. Choi, J.H. Park, J.H. Park, J.G. Park, J. Kr. Phys. Soc. 49, 1234 (2006)Google Scholar
  15. 15.
    D.W. Kim, T.G. Kim, K.S. Hong, Mater. Res. Bull. 34, 771 (1999)CrossRefGoogle Scholar
  16. 16.
    C.S. Hsu, C.L. Huang, J.F. Tseng, C.Y. Huang, Mater. Res. Bull. 38, 1091 (2003)CrossRefGoogle Scholar
  17. 17.
    C.M. Beck, N.W. Thomas, I. Thompson, J. Eur. Ceram. Soc. 18, 1685 (1998) CrossRefGoogle Scholar
  18. 18.
    G.Q. Wang, S.H. Wu, H. Su, Mater. Lett. 59, 2229 (2005)CrossRefGoogle Scholar
  19. 19.
    J.C. Chang, Y.F. Chen, J.H. Jean, Jpn. J. Appl. Phys. 43, 4267 (2004)CrossRefGoogle Scholar
  20. 20.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theor. Technol. 8, 402 (1960)CrossRefGoogle Scholar
  21. 21.
    D.R. Lide (ed.), In CRC Handbook of Chemistry and Physics, Internet Version 2007, 87th edn., (Taylor and Francis, Boca Raton, 2007) sec.12
  22. 22.
    S. Nomura, K. Tomaya, K. Kaneta, Jpn. J. Appl. Phys. 22, 1125 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Materials Science and Chemical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations