Hap-based porous material with potential application as bio-packages for MEMS

  • R. Rodriguez
  • M. Estevez
  • S. Vargas
  • R. Salazar
  • F. Pacheco


Novel hydroxyapatite-based hybrid materials with controlled porosity and good adhesion to silicon surfaces were designed as bio-package for MEMS with potential application for implants in the human body. These materials were prepared using synthetic Hydroxyapatite (HAp) powder with three different polymeric agglutinants. These porous materials have high ceramic content (up to 60 wt.% respect to resin) with a pore size between 100 and 350 microns and a pore volume fraction in the 25–60% range. These hybrid materials have high wearing resistance and hydrolytic stability. The samples were characterized mechanical and morphologically using XRD, SEM, densitometry, abrasion and mechanical tests.


Wear Resistance Porous Material Alumina Particle Young Modulus Abrasion Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are in debt to Alicia del Real by her valuable help in SEM analysis and Maribel Presa for the determination of the mechanical properties.


  1. 1.
    Z.W. Zhong, Z.F. Wang, Y.H. Tan, Chemical mechanical polishing of polymeric materials for MEMS applications. Microelectron. J. 37, 295–301 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Xiao, L. Che, X. Li, Y. Wang, A cost-effective flexible MEMS technique for temperature sensing. Microelectron. J. 38, 360–364 (2007)Google Scholar
  3. 3.
    B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, Influence of tool vibration on machining performance in electrochemical micro-machining of copper. Int. J. Mach. Tools Manuf. 47, 335–342 (2007)CrossRefGoogle Scholar
  4. 4.
    C. Lie, Y. Zhou, X.-Y. Gao, W. Ding, Y. Cao, Z.-M. Zhou, H. Choi, Fabrication of 3D MEMS toroidal micoinductor for high temperature application. Microelectron. J. 37, 1347–1351 (2006)CrossRefGoogle Scholar
  5. 5.
    Y.I. Rozenberg, Y. Rosenberg, V. krylov, G. Belitsky, Y. Shacham-Diamand, Resin-bonded permanent magnetic films with uot-of-plane magnetization for MEMS applications. J. Magn. Magn. Mater. 305, 357–360 (2006)Google Scholar
  6. 6.
    D.-Y. Qiao, W.-Z. Yuan, X.-Y. Li, A two-beam method for extending the working range of electrostatic parallel-plate micro-actuators. J. Electrostat. 65, 256–262 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Sing, R. Mukherjee, K. Tuner, S. Shaw, MEMS implementation of axial and follower end forces. J. Sound Vib. 286, 637–644 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Roman, S. Mir, B. Charlot, Building an analogue fault simulation tool and its applications to MEMS. Microelectron. J. 34, 897–906 (2003)CrossRefGoogle Scholar
  9. 9.
    P. Cooley, D. Wallace, B. Antohe, Applicatons of ink-jet printing technology to BioMEMS and microfluidic systems. J. Assoc. Lab. Automat. 7, 33–39 (2002)CrossRefGoogle Scholar
  10. 10.
    M.C. Song, Z. Liu, M.J. Wang, T.M. Yu, D.Y. Zhao, Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. J. Mater. Proce. Technol. 187, 668–667 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Barbic, Magnetic wires in MEMS and bio-medical applications. J. Magn. Magn. Mater. 249, 357–367 (2002)CrossRefGoogle Scholar
  12. 12.
    G.S.P. Castle, Industrial applications of electrostatics: the past, present and future. J. Electrostat. 51, 1–7 (2001)CrossRefGoogle Scholar
  13. 13.
    M.G. Alonso-Amigo, Polymer microfabrication for microarrays, microreactors and microfluidics. J. Assoc. Lab. Automat. 5, 96–101 (2000)CrossRefGoogle Scholar
  14. 14.
    A. Cosijns, C. Vervaet, J. Luyten, S. Mullens, F. Siepmann, L. Van Hoorebeke, B. Masschaele, V. Cnudde, J.P. Remon, Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. (In Press), Corrected Proof, Available online 28 February 2007Google Scholar
  15. 15.
    T. Pichonat, B. Gauthier-Manuel, A new process s for the manufacturing of reproducible mesoporous silicon membranes. J. Membrane Sci. 280, 494–500 (2006)CrossRefGoogle Scholar
  16. 16.
    V.J. P. Lim, K.A Khor, L. Fu, Hydroxyapatite—zirconia composite coatings via the plasma spraying process. J. Mater. Proce. Technol. 89, 491–496 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Kundu, J.H. Jang, H.R. Lee, S.-H. Kim, J.H. Gil, C.R. Jung, Y. Soo Oh, MEMS-based micro-fuel processor for application in a cell phone. J. Power Sour. 162, 572–578 (2006)CrossRefGoogle Scholar
  18. 18.
    P.H.F. Caria, E.Y. Kawachi, C.A. Bertran, J.A. Camilli, Biological assessment of porous-implant hydroxyapatite combines with periosteal grafting in maxillary defects. J. Oral Maxill. Surg. 65, 847–854 (2007)CrossRefGoogle Scholar
  19. 19.
    F. Tancret, J.-M. Bouler, J. Chamousset, L.-M. Minois, Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26, 3647–3656 (2006)CrossRefGoogle Scholar
  20. 20.
    I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Comp. 430, 330–333 (2007)CrossRefGoogle Scholar
  21. 21.
    P.S. Uskokovic, C.Y. Tang, C.P. Tsui, N. Ignjatovic, D.P. Uskokovic, Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping. J. Eur. Ceram. Soc. 27, 1559–1564 (2007)CrossRefGoogle Scholar
  22. 22.
    C. Balázsi, F. Wéber, Z. kövér, E. Horváth, C. Németh, Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 27, 1601–1606 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Katagiri, N. Takahashi, Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8(3), 147–159 (2002)CrossRefGoogle Scholar
  24. 24.
    J.P. Paul, Strength requirements for internal and external prostheses. J. Biomech. 32, 381–393 (1999)CrossRefGoogle Scholar
  25. 25.
    M.H. Prado da Silva, A. Fernández Lemos, J.M. Fonte Ferreira, J. Domingos Santos, Mechanical characterization of porous glass reinforced hydroxyapatite ceramics–Bonelike. Mat. Res. 6(3), 321–325 (2003)CrossRefGoogle Scholar
  26. 26.
    See for example: S. Susuki, E. Ando, Abrasion of thin films deposited onto glass by the Taber test. Thin Solid Films 340, 194–200 (1999)Google Scholar
  27. 27.
    E. Rivera-Muñoz, R. Velázquez, R. Rodríguez, Improvement in mechanical properties of hydroxiapatite objects with controlled porosity made by modified gelcasting process. Mater. Sci. Forum 426–432, 4489–4494 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Rodriguez
    • 1
    • 2
  • M. Estevez
    • 1
  • S. Vargas
    • 1
  • R. Salazar
    • 3
  • F. Pacheco
    • 3
  1. 1.Centro Física Aplicada y Tecnología AvanzadaUNAMQuerétaroMéxico
  2. 2.Centro de Investigación y Estudios Avanzados del IPN QuerétaroMéxico
  3. 3.MEMS Laboratory and CSATUPAEPPueblaMexico

Personalised recommendations