Skip to main content
Log in

Hap-based porous material with potential application as bio-packages for MEMS

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel hydroxyapatite-based hybrid materials with controlled porosity and good adhesion to silicon surfaces were designed as bio-package for MEMS with potential application for implants in the human body. These materials were prepared using synthetic Hydroxyapatite (HAp) powder with three different polymeric agglutinants. These porous materials have high ceramic content (up to 60 wt.% respect to resin) with a pore size between 100 and 350 microns and a pore volume fraction in the 25–60% range. These hybrid materials have high wearing resistance and hydrolytic stability. The samples were characterized mechanical and morphologically using XRD, SEM, densitometry, abrasion and mechanical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.W. Zhong, Z.F. Wang, Y.H. Tan, Chemical mechanical polishing of polymeric materials for MEMS applications. Microelectron. J. 37, 295–301 (2006)

    Article  CAS  Google Scholar 

  2. S. Xiao, L. Che, X. Li, Y. Wang, A cost-effective flexible MEMS technique for temperature sensing. Microelectron. J. 38, 360–364 (2007)

    Google Scholar 

  3. B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, Influence of tool vibration on machining performance in electrochemical micro-machining of copper. Int. J. Mach. Tools Manuf. 47, 335–342 (2007)

    Article  Google Scholar 

  4. C. Lie, Y. Zhou, X.-Y. Gao, W. Ding, Y. Cao, Z.-M. Zhou, H. Choi, Fabrication of 3D MEMS toroidal micoinductor for high temperature application. Microelectron. J. 37, 1347–1351 (2006)

    Article  CAS  Google Scholar 

  5. Y.I. Rozenberg, Y. Rosenberg, V. krylov, G. Belitsky, Y. Shacham-Diamand, Resin-bonded permanent magnetic films with uot-of-plane magnetization for MEMS applications. J. Magn. Magn. Mater. 305, 357–360 (2006)

  6. D.-Y. Qiao, W.-Z. Yuan, X.-Y. Li, A two-beam method for extending the working range of electrostatic parallel-plate micro-actuators. J. Electrostat. 65, 256–262 (2007)

    Article  CAS  Google Scholar 

  7. A. Sing, R. Mukherjee, K. Tuner, S. Shaw, MEMS implementation of axial and follower end forces. J. Sound Vib. 286, 637–644 (2005)

    Article  Google Scholar 

  8. C. Roman, S. Mir, B. Charlot, Building an analogue fault simulation tool and its applications to MEMS. Microelectron. J. 34, 897–906 (2003)

    Article  CAS  Google Scholar 

  9. P. Cooley, D. Wallace, B. Antohe, Applicatons of ink-jet printing technology to BioMEMS and microfluidic systems. J. Assoc. Lab. Automat. 7, 33–39 (2002)

    Article  Google Scholar 

  10. M.C. Song, Z. Liu, M.J. Wang, T.M. Yu, D.Y. Zhao, Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. J. Mater. Proce. Technol. 187, 668–667 (2007)

    Article  CAS  Google Scholar 

  11. M. Barbic, Magnetic wires in MEMS and bio-medical applications. J. Magn. Magn. Mater. 249, 357–367 (2002)

    Article  CAS  Google Scholar 

  12. G.S.P. Castle, Industrial applications of electrostatics: the past, present and future. J. Electrostat. 51, 1–7 (2001)

    Article  Google Scholar 

  13. M.G. Alonso-Amigo, Polymer microfabrication for microarrays, microreactors and microfluidics. J. Assoc. Lab. Automat. 5, 96–101 (2000)

    Article  Google Scholar 

  14. A. Cosijns, C. Vervaet, J. Luyten, S. Mullens, F. Siepmann, L. Van Hoorebeke, B. Masschaele, V. Cnudde, J.P. Remon, Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. (In Press), Corrected Proof, Available online 28 February 2007

  15. T. Pichonat, B. Gauthier-Manuel, A new process s for the manufacturing of reproducible mesoporous silicon membranes. J. Membrane Sci. 280, 494–500 (2006)

    Article  CAS  Google Scholar 

  16. V.J. P. Lim, K.A Khor, L. Fu, Hydroxyapatite—zirconia composite coatings via the plasma spraying process. J. Mater. Proce. Technol. 89, 491–496 (1999)

    Article  Google Scholar 

  17. A. Kundu, J.H. Jang, H.R. Lee, S.-H. Kim, J.H. Gil, C.R. Jung, Y. Soo Oh, MEMS-based micro-fuel processor for application in a cell phone. J. Power Sour. 162, 572–578 (2006)

    Article  CAS  Google Scholar 

  18. P.H.F. Caria, E.Y. Kawachi, C.A. Bertran, J.A. Camilli, Biological assessment of porous-implant hydroxyapatite combines with periosteal grafting in maxillary defects. J. Oral Maxill. Surg. 65, 847–854 (2007)

    Article  Google Scholar 

  19. F. Tancret, J.-M. Bouler, J. Chamousset, L.-M. Minois, Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26, 3647–3656 (2006)

    Article  CAS  Google Scholar 

  20. I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Comp. 430, 330–333 (2007)

    Article  CAS  Google Scholar 

  21. P.S. Uskokovic, C.Y. Tang, C.P. Tsui, N. Ignjatovic, D.P. Uskokovic, Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping. J. Eur. Ceram. Soc. 27, 1559–1564 (2007)

    Article  CAS  Google Scholar 

  22. C. Balázsi, F. Wéber, Z. kövér, E. Horváth, C. Németh, Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 27, 1601–1606 (2007)

    Article  CAS  Google Scholar 

  23. T. Katagiri, N. Takahashi, Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8(3), 147–159 (2002)

    Article  CAS  Google Scholar 

  24. J.P. Paul, Strength requirements for internal and external prostheses. J. Biomech. 32, 381–393 (1999)

    Article  CAS  Google Scholar 

  25. M.H. Prado da Silva, A. Fernández Lemos, J.M. Fonte Ferreira, J. Domingos Santos, Mechanical characterization of porous glass reinforced hydroxyapatite ceramics–Bonelike. Mat. Res. 6(3), 321–325 (2003)

    Article  CAS  Google Scholar 

  26. See for example: S. Susuki, E. Ando, Abrasion of thin films deposited onto glass by the Taber test. Thin Solid Films 340, 194–200 (1999)

    Google Scholar 

  27. E. Rivera-Muñoz, R. Velázquez, R. Rodríguez, Improvement in mechanical properties of hydroxiapatite objects with controlled porosity made by modified gelcasting process. Mater. Sci. Forum 426–432, 4489–4494 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are in debt to Alicia del Real by her valuable help in SEM analysis and Maribel Presa for the determination of the mechanical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, R., Estevez, M., Vargas, S. et al. Hap-based porous material with potential application as bio-packages for MEMS. J Mater Sci: Mater Electron 19, 646–652 (2008). https://doi.org/10.1007/s10854-007-9413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9413-3

Keywords

Navigation