Electrical characterization of 4H–SiC Schottky diodes with a RuO2 and a RuWO x Schottky contacts

  • Dalibor Buc
  • Lubica Stuchlikova
  • Ladislav Harmatha
  • Ivan Hotovy


Two types of Schottky diodes were prepared on n-type silicon carbide (4H–SiC) substrates by deposition of ruthenium oxide (RuO2) Schottky contacts or ruthenium tungsten oxide (RuWO x ) Schottky contacts. The RuO2/4H–SiC and RuWO x /4H–SiC Schottky barrier diodes were examined first by current–voltage (I-V) measurements, which confirmed symmetry of the I-V characteristics. The ideality factor (n) is rather high (∼1.28/∼1.15) at the temperature 300 K, the current of saturation is I S ∼10 pA/∼7 pA and the Schottky barrier height is ∼1.13 eV/∼1.11 eV. After this diagnostic step, the samples were analysed by C-V and standard DLTS methods in the temperature range from 83 K to 450 K. In measured DLTS spectra were identified five deep levels ET1–ET5 (0.27, 0.45, 0.56, 0.58 and 0.85 eV) in RuO2/4H–SiC Schottky barrier diodes and three deep levels E1–E3 (0.36, 0.38 and 0.69 eV) in RuWO x /4H–SiC Schottky barrier diodes.


RuO2 Versus Measurement Ideality Factor Schottky Diode Schottky Barrier Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences VEGA 1/3091/06 and 1/3095/06.


  1. 1.
    P.G. Neudeck, Encyclopedia of materials—Science and technology, (Elsevier Science Ltd., 2001), ISBN: 0-08-0431526, 8508Google Scholar
  2. 2.
    S. Mitra, Solid State Electron. 47, 193 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Wen, Z. Zhou, Mater. Chem. Phys. 98, 442 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Desgreniers, K. Lagarec, Phys. Rev. B. 59, 8467 (1999)CrossRefGoogle Scholar
  5. 5.
    C.W. Law, K.Y. Tong, J.H. Li, K. Li, Solid State Electron. 44, 1569 (2000)CrossRefGoogle Scholar
  6. 6.
    H.K. Kim, S.H. Cho, Y.W. Ok, T.Y. Seong, Y.S. Yoon, J. Vac. Sci. Technol. B 21(3), 949 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Tuominen, R. Yakimova, E. Prieur, A. Ellison, T. Tuomi, A. Vehanen, E. Janzén, Diamond Relat. Mater. 6, 1272 (1997)CrossRefGoogle Scholar
  8. 8.
    D. Buc, D. Music, U. Helmersson, Growth and characterisation of RuO2 films prepared by reactive unbalanced magnetron sputtering. in Proceedings of the ASDAM’ 2000 Conference, Smolenice, Slovakia, Piscataway, IEEE, 465 (2000)Google Scholar
  9. 9.
    D.V. Lang, J. Appl. Phys. 45, 3014 (1974)CrossRefGoogle Scholar
  10. 10.
    A. Lebedev, in Silicon Carbide: Materials and Processing, ed. by Z. C. Feng, J. H. Zhao, (Taylor Francis, New York, 2004) p. 121Google Scholar
  11. 11.
    L. Stuchlikova, D. Buc, L. Harmatha, U. Helmersson, W.H. Chang, I. Bello, Appl. Phys. Lett. 88, 153509 (2006)CrossRefGoogle Scholar
  12. 12.
    D. Buc, L. Stuchlikova, U. Helmersson, W.H. Chang, I. Bello, Chem. Phys. Lett. 429, 617 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Eberlein, R. Jones, P. Briddon, Phys. Rev. Lett. 90(22), 225502 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dalibor Buc
    • 1
  • Lubica Stuchlikova
    • 1
  • Ladislav Harmatha
    • 1
  • Ivan Hotovy
    • 1
  1. 1.Department of Microelectronics, Faculty of Electrical Engineering and Information TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations