The recent advances of research on p-type ZnO thin film



ZnO is a direct wide-band gap (3.37 eV) compound semiconductor with large exciton binding energy (60 meV) at room temperature. Therefore it has a strong potential for various short-wavelength optoelectronic device, and now attracts tremendous renew interests for developing highly efficient ZnO-based optoelectronic devices. While high quality ZnO p–n junction materials obtained is the key step of its optoelectronic application. Whereas ZnO thin film is naturally only n-type conductivity due to a large number of native defects, such as oxygen vacancies and zinc interstitials, which lead to difficulty in achieving p-type ZnO thin film. Therefore the fabrication of p-type ZnO thin film has been a key and hotspot of the research on ZnO. This article summarizes the recent advances of the studies on p-type ZnO thin film and the correlative several important breakthroughs in ZnO homo-junction devices based on succeeding on fabrication of p-type ZnO film. Although the achievement obtained as summarized, there is also a long way from the real application of ZnO-based optoelectronic device. We here also discuss the problem and relevant possible solution for the fabrication of p-type ZnO film and its optoelectronic application. And forecast the preparation trends of p-type ZnO thin film.


Hole Carrier Concentration Shallow Acceptor Level Codoping Method Repeated Temperature Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the financial supports from Chinese Nature Science Fundamental Committee (Grant No: 60390073), Sichuan Fundamental Application Research Project (Grant No: YJ0290681) and the State Key Development Program for Basic Research of China (Grant No: ZJ0508).


  1. 1.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)CrossRefGoogle Scholar
  2. 2.
    D.P. Norton, Y.W. Heo, Mater. Today 34–40(7), 34 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Makino, C.H. Chia, T.T. Nguen, Y. Segawa, Appl. Phys. Lett. 77, 1632 (2000)CrossRefGoogle Scholar
  4. 4.
    R.F. Service, Science 276, 895 (1997)CrossRefGoogle Scholar
  5. 5.
    D.C. Look, Mater. Sci. Eng. B B80, 383 (2001)CrossRefGoogle Scholar
  6. 6.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004)CrossRefGoogle Scholar
  7. 7.
    W. Walukiewicz, Phys. Rev. B 50, 5221 (1994)CrossRefGoogle Scholar
  8. 8.
    D.C. Look, J.W. Hemsky, J.R. Rizelove, Phys. Rev. Lett. 82, 2552 (1999)CrossRefGoogle Scholar
  9. 9.
    S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Joseph, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. Part 2 38, L1205 (1999)Google Scholar
  11. 11.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)CrossRefGoogle Scholar
  12. 12.
    A.B.M.A. Ashrafi, I. Suemune, H. Kumano, S. Tanaka, Jpn. J. Appl. Phys. Part 2 41, L1281 (2002)Google Scholar
  13. 13.
    K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys. Part 2 36, L1453 (1997)Google Scholar
  14. 14.
    X.-L. Guo, H. Tabata, T. Kawai, J. Cryst. Growth 237–239, 544 (2002)CrossRefGoogle Scholar
  15. 15.
    Z.Z. Ye, J.G. Lu, H.H. Chen, Y.Z. Zhang, L. Wang, B.H. Zhao, J.Y. Huang, J. Cryst. Growth 253, 258 (2003)CrossRefGoogle Scholar
  16. 16.
    C.C. Lin, S.Y. Chen, S.Y. Cheng, H.Y. Lee, Appl. Phys. Lett. 84, 5040 (2004)CrossRefGoogle Scholar
  17. 17.
    J.M. Bian, X.M. Li, X.D. Gao, W.D. Yu, L.D. Chen, Appl. Phys.Lett. 84, 541 (2004)CrossRefGoogle Scholar
  18. 18.
    C.G. Van de Walle, D.B. Laks, G.F. Neumark, S.T. Pantelides, Phys. Rev. B 47, 9425 (1993)CrossRefGoogle Scholar
  19. 19.
    Y. Ma, G.T. Du, S.R. Yang, Z.T. Li, B.J. Zhao, X.T. Yang, T.P. Yang, Y.T. Zhang, D.L. Liu, J. Appl. Phys. 95, 6268 (2004)CrossRefGoogle Scholar
  20. 20.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  21. 21.
    C.G. Van, D.B. Laks, G.F. Neumark, S.T. Pantelides, Phys. Rev. B 47, 9425 (1993)CrossRefGoogle Scholar
  22. 22.
    D.B. Laks, C.G. Van de Walle, G.F. Neumark, S.T. Pantelides, Phys. Rev. Lett. 66, 648 (1991)CrossRefGoogle Scholar
  23. 23.
    A. Garcia, J.E. Northrup, Phys. Rev. Lett. 74, 1131 (1995)CrossRefGoogle Scholar
  24. 24.
    C.H. Park, S.B. Zhang, S.H. Wei, Phys. Rev. B 66, 073202 (2002)CrossRefGoogle Scholar
  25. 25.
    D.C. Look, R.L. Jones, J.R. Sizelove, N.Y. Garces, N.C. Giles, L.E. Halliburton, Phys. Status Solidi A 195, 171 (2004)CrossRefGoogle Scholar
  26. 26.
    X. Li, B. Keyes, S. Asher, S.B. Zhang, S.H. Wei, T.J. Coutts, Appl. Phys.Lett. 86, 122107 (2005)CrossRefGoogle Scholar
  27. 27.
    E.C. Lee, Y.S. Jin, K.J. Chang, Physica B 308–310, 912 (2001)CrossRefGoogle Scholar
  28. 28.
    S. Limpijimnong, S.B. Zhang, S.-H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504-1 (2004)Google Scholar
  29. 29.
    T. Yamamoto, Thin Solid Films 420–421, 100 (2002)CrossRefGoogle Scholar
  30. 30.
    L.G. Wang A. Zunger, Phys. Rev. Lett. 90, 256401-1 (2003)Google Scholar
  31. 31.
    M.S. Oh, S.H. Kim, T.Y. Seong, Appl. Phys. Lett. 87, 122103 (2005)CrossRefGoogle Scholar
  32. 32.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)CrossRefGoogle Scholar
  33. 33.
    M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)CrossRefGoogle Scholar
  34. 34.
    G.W. Tomlis, J.L. Routbort, T.O. Mason, J. Appl. Phys. 87, 117 (2000)CrossRefGoogle Scholar
  35. 35.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, J.G. Lu, H.P. He, L.P. Zhu, B.H. Zhao, Appl. Phys. Lett. 88, 262103 (2006)CrossRefGoogle Scholar
  36. 36.
    W.J. Lee, J. Kang, K.J. Chang, Phys. Rev. B 73, 024117 (2006)CrossRefGoogle Scholar
  37. 37.
    H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, S.Y. Lee, Appl. Phys. Lett. 88, 202108 (2006)CrossRefGoogle Scholar
  38. 38.
    Y.J. Zeng, Z.Z. Ye, J.G. Lu, W.Z. Xu, L.P. Zhu, B.H. Zhao, Appl. Phys. Lett. 89, 042106 (2006)CrossRefGoogle Scholar
  39. 39.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye, Y.J. Zeng, H.P. He, L.P. Zhu, J.Y. Huang, L. Wang, J. Yuan, B.H. Zhao, X.H. Li, Appl. Phys. Lett. 89, 112113 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, J. Cryst. Growth 209, 526 (2000)CrossRefGoogle Scholar
  41. 41.
    Y. Yan, S.B. Zhang, S.T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, Mater. Lett. 57, 3311 (2003)CrossRefGoogle Scholar
  43. 43.
    C. Wang, Z. Ji, K. Liu, Y. Xiang, Z. Ye, J. Cryst. Growth 259, 279 (2003)CrossRefGoogle Scholar
  44. 44.
    A. Tsukazaki, M. Kubota, Jpn. J. Appl. Phys. 44, 643 (2005)CrossRefGoogle Scholar
  45. 45.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, W.P. Beyermann, Appl. Phys. Lett. 88, 052106 (2006)CrossRefGoogle Scholar
  46. 46.
    Z.G. Yu, P. Wu, H. Gong, Appl. Phys. Lett. 88, 132114 (2006)CrossRefGoogle Scholar
  47. 47.
    V. Vaithianathan, B.T. Lee, S.S. Kim, Appl. Phys. Lett. 86, 062101 (2005)CrossRefGoogle Scholar
  48. 48.
    G. Braunstein, A. Muraviev, H. Saxena, Appl. Phys. Lett. 87, 192103 (2005)CrossRefGoogle Scholar
  49. 49.
    L.J. Mandalapu, Z. Yang, F.X. Xiu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 88, 092103 (2006)CrossRefGoogle Scholar
  50. 50.
    L.J. Mandalapu, F.X. Xiu, Z. Yang, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 88, 112108 (2006)CrossRefGoogle Scholar
  51. 51.
    G.D. Yuan, Z.Z. Ye, L.P. Zhu, Q. Qian, B.H. Zhao, R.X. Fan, Appl. Phys. Lett. 86, 202106 (2005)CrossRefGoogle Scholar
  52. 52.
    L.L. Chen, J.G. Lu, Z.Z. Ye, Y.M. Lin, B.H. Zhao, Y.M. Ye, J.S. Li, L.P. Zhu, Appl. Phys. Lett. 87, 252106 (2005)CrossRefGoogle Scholar
  53. 53.
    Y. Cao, L. Miao, S. Tanemura, M. Tanemura,Y. Kuno, Y. Hayashi, Appl. Phys. Lett. 88, 251116 (2006)CrossRefGoogle Scholar
  54. 54.
    M. Kumar, T.H. Kim, S.S. Kim, B.T. Lee, Appl. Phys. Lett. 89, 112103 (2006)CrossRefGoogle Scholar
  55. 55.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, Appl. Phys. Lett. 88, 222114 (2006)CrossRefGoogle Scholar
  56. 56.
    A. Tsukazaki, M. Kubota, O. Takeyoshi et al., Nat. Mater. 4, 42 (2005)CrossRefGoogle Scholar
  57. 57.
    S.J. Jiao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B. Yao, J.Y. Zhang, Appl. Phys. Lett. 88, 031911 (2006)CrossRefGoogle Scholar
  58. 58.
    W. Liu, S.L. Gu, J.D. Ye, S.M. Zhu, S.M. Liu, X. Zhou, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 88, 092101 (2006)CrossRefGoogle Scholar
  59. 59.
    W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, Appl. Phys. Lett. 88, 173506 (2006)CrossRefGoogle Scholar
  60. 60.
    G.E. Pike, H. Seager, J. Appl. Phys. 50, 3414 (1979)CrossRefGoogle Scholar
  61. 61.
    G. Blatter, F. Greuter, Phys. Rev. B. 33, 3952 (1986)CrossRefGoogle Scholar
  62. 62.
    E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.C. Semmelhack et al., Appl. Phys. Lett. 82, 3901 (2003)CrossRefGoogle Scholar
  63. 63.
    D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)CrossRefGoogle Scholar
  64. 64.
    O. Schmidt, P. Kiesel, D. Ehrentraut, T. Fukuda, N.M. Johnson, Appl. Phys. A 88, 71 (2007)CrossRefGoogle Scholar
  65. 65.
    O. Schmidt, P. Kiesel, V.D. Walle, G.J. Chris, M. Noble et al., Jpn. J. Appl. Phys. 44, 7271 (2005)CrossRefGoogle Scholar
  66. 66.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, J. Electron. Mater. 29, 69 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid State ElectronicsUniversity of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations