Skip to main content
Log in

A graphical peak analysis method for characterizing impurities in SiC, GaN and diamond from temperature-dependent majority-carrier concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A method for uniquely determining the densities and energy levels of impurities from the temperature dependence of the majority-carrier concentration in wide band gap semiconductors (e.g., SiC, GaN, and diamond) is discussed. It is demonstrated that the proposed graphical peak analysis method can evaluate the number of impurity species and can determine those densities and energy levels uniquely and accurately, while fitting a simulation to the experimental temperature-dependent majority-carrier concentration leads to less reliable densities and energy levels of impurities. In the case that the Fermi levels in p-type SiC, GaN and diamond are located between the acceptor level and the valence band maximum, the excited states of acceptors strongly affect the hole concentration. This indicates the distribution function including the influence of the excited states should be applied to determine the densities and energy levels of acceptors from the temperature-dependent hole concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Matsuura, K. Sonoi, Jpn. J. Appl. Phys. 35, L555 (1996)

    Article  CAS  Google Scholar 

  2. S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe, K. Arai, J. Appl. Phys. 96, 5601 (2004)

    Article  CAS  Google Scholar 

  3. H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama, T. Watanabe, K. Kojima, T. Shinohe, K. Arai, J. Appl. Phys. 96, 2708 (2004)

    Article  CAS  Google Scholar 

  4. H. Matsuura, J. Appl. Phys. 95, 4213 (2004)

    Article  CAS  Google Scholar 

  5. H. Matsuura, T. Morizono, Y. Inoue, S. Kagamihara, A. Namba, T. Imai, T. Takebe, Jpn. J. Appl. Phys. 45, 6376 (2006)

    Article  CAS  Google Scholar 

  6. H. Matsuura, Phys. Rev. B 74, 245216 (2006)

    Article  Google Scholar 

  7. H. Matsuura, Masuda, Y. Chen, S. Nishino, Jpn. J. Appl. Phys. 39, 5069 (2000)

    Article  CAS  Google Scholar 

  8. H. Matsuura, H. Nagasawa, K. Yagi, T. Kawahara, J. Appl. Phys. 96, 7346 (2004)

    Article  CAS  Google Scholar 

  9. H. Matsuura, D. Katsuya, T. Ishida, S. Kagamihara, K. Aso, H. Iwata, T. Aki, S.-W. Kim, T. Shibata, T. Suzuki, Phys. Status Solidi C 0, 2214 (2003)

    Article  CAS  Google Scholar 

  10. M. Ikeda, H. Matsunami, T. Tanaka, Phys. Rev. B 22, 2842 (1980)

    Article  CAS  Google Scholar 

  11. W. Götz, A. Schöner, G. Pensl, W. Suttrop, W.J. Choyke, R. Stein, S. Leibenzeder, J. Appl. Phys. 73, 3332 (1993)

    Article  Google Scholar 

  12. T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, M. Maier, Phys. Status Solidi A 162, 277 (1997)

    Article  CAS  Google Scholar 

  13. H. Matsuura, S. Kagamihara, Y. Itoh, T. Ohshima, H. Itoh, Physica B 376–377, 34 (2006)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Academic Frontier Promotion Projects of the Ministry of Education, Culture, Sports, Science and Technology in 1998–2002 and 2003–2007, and partially supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science in 2006 and 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Matsuura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, H. A graphical peak analysis method for characterizing impurities in SiC, GaN and diamond from temperature-dependent majority-carrier concentration. J Mater Sci: Mater Electron 19, 720–726 (2008). https://doi.org/10.1007/s10854-007-9390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9390-6

Keywords

Navigation