Dielectric and piezoelectric characterization of PSZT–BT ceramics for capacitor applications



The ceramic compositions (1 − x)Pb0.9875Sr0.0125(Zr0.53Ti0.47)O3 –xBaTiO3 where x = 0.2, 0.4, 0.6 and 0.8, fabricated through solid state reaction method were investigated for phase formation, microstructure, density, dielectric and piezoelectric properties. The X-ray diffraction patterns indicated that introduction of BaTiO3 in isovalent donor Sr modified PZT lattice, diminished the tetragonality. All the specimens were homogenous in nature due to the coarse grains of BaTiO3, which had undergone inter-granular growth and were homogeneously distributed within the PSZT–BT lattice. Introduction of BaTiO3 in PSZT perovskite lattice resulted in enhanced grain growth till x = 0.6 (2.03 μm). Dielectric properties (εRT, Tanδ and T c) were influenced by both BaTiO3 and Sr. The maximum εRT = 1588 and εTc = 10478 were found in 0.2PSZT–0.8BT ceramic system. The optimum dielectric permittivity at room temperature with a low Curie transition temperature was found in 0.2PSZT–0.8BT composition. Piezoelectric properties are very sensitive to isovalent substitutions, where isovalent donor Sr modification and BT concentrations in PZT, affected the piezoelectric properties (k p and d 33) in the ceramic system. Thus, the series PSZT–BT compositions could be ideal candidates for capacitors and suitable sensor applications.


Perovskite BaTiO3 Piezoelectric Property Barium Titanate Ceramic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the University of Concepcion for the financial assistance extended in this regard. The authors would also like to thank Ms C N Devi for the technical assistance and valuable suggestions during this work.


  1. 1.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  2. 2.
    X. Wang, X. Yao, Ferroelectrics 54, 307 (1994)Google Scholar
  3. 3.
    C.L. Li, C.C. Chou, Integr. Ferroelectrics 55, 955 (2003)CrossRefGoogle Scholar
  4. 4.
    P.D. Spagnol, M.A. Zaghete, C.O. Paiva-Santos, A.V.C. Andrade, A.A. Cavalheiro, S.M. Tebcherani, J.A. Varela, J. Mater. Res. 17(3), 620 (2002)CrossRefGoogle Scholar
  5. 5.
    B.K. Gan, J.M. Xue, D.M. Wan, J. Wang, Appl. Phys. A 69, 433 (1999)Google Scholar
  6. 6.
    A. Kishimoto, S. Seo, Key Eng. Mat. 269, 15 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Huang, L. Gao, Y. Hu, H. Du, J. Mater. Sci.: Mat. Electr. 18(6), 605 (2007)CrossRefGoogle Scholar
  8. 8.
    S.T. Sulepetkar, R.L. Raibagkar, J. Mater. Sci.: Mat. Electr. 18(6), 671 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Okazaki, Am. Ceram. Soc. Bull. 61, 932 (1982)Google Scholar
  10. 10.
    T. Ogawa, N. Ujiie, K. Hukuta in Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics ISAF, August 1996, 1(1) (1996) 459Google Scholar
  11. 11.
    R. Yimnirun, Ferroelectrics 331, 9 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Miclea, C. Tanasoiu, L. Amarande, C.F. Miclea, Ferroelectrics 319, 57 (2005)CrossRefGoogle Scholar
  13. 13.
    A.G. Luchaninov, A.V. Shilnikov, L.A. Shuvalov, Ferroelectrics 208, 385 (1998)CrossRefGoogle Scholar
  14. 14.
    Y. Xu, Ferroelectric Materials and their Applications (North Holland, Amsterdam, The Netherlands, 1991), pp. 110–150Google Scholar
  15. 15.
    H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Am. Ceram. Soc. 85(1), 207 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Eur. Ceram. Soc. 21, 1371 (2001)CrossRefGoogle Scholar
  17. 17.
    W. Zhu, A.L. Kholkin, P.Q. Mantas, J.L. Baptista, J. Am. Ceram. Soc. 84(8), 1740 (2001)CrossRefGoogle Scholar
  18. 18.
    L. Hanh, K. Uchino, S. Namura, Jpn. J. Appl. Phys. 17(4), 637 (1978)CrossRefGoogle Scholar
  19. 19.
    W. Chaisan, S. Ananta, T. Tunkasiri, Cur. Appl. Phys. 4, 182 (2004)CrossRefGoogle Scholar
  20. 20.
    T.R.N. Kutty, V. Ravi, J. Mater. Sci.: Mat. Electr. 2(2), 79 (2004)CrossRefGoogle Scholar
  21. 21.
    L.E. Cross, Mater. Chem. Phys. 43, 108 (1996)CrossRefGoogle Scholar
  22. 22.
    K. Ramam, M. Lopez, Phys. Stat. Sol. (a) 203(15), 3852 (2006)CrossRefGoogle Scholar
  23. 23.
    K. Ramam, M. Lopez, J. Phys. D: Appl. Phys. 39, 4466 (2006)CrossRefGoogle Scholar
  24. 24.
    W.R. Chaisan, W.R. Yimnirun, S. Ananta, D.P. Cann, Mater. Lett. 59, 3732 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Yimnirun, S. Ananta, S. Chamunglap, Mat. Chem. Phys. 102, 165 (2007)CrossRefGoogle Scholar
  26. 26.
    W.R. Chaisan, W.R. Yimnirun, S. Ananta, D.P. Cann, Mat. Sci. Engg. B. 132, 300 (2006)CrossRefGoogle Scholar
  27. 27.
    F. Xia, X. Yao, J. Mater. Sci.: Mat. Electr. 34(14), 3341 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departmento de Ingeneria de Materials, (DIMAT), Facultad de IngenieriaUniversidad de ConcepcionConcepcionChile

Personalised recommendations