Skip to main content
Log in

Dielectric and piezoelectric characterization of PSZT–BT ceramics for capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ceramic compositions (1 − x)Pb0.9875Sr0.0125(Zr0.53Ti0.47)O3 –xBaTiO3 where x = 0.2, 0.4, 0.6 and 0.8, fabricated through solid state reaction method were investigated for phase formation, microstructure, density, dielectric and piezoelectric properties. The X-ray diffraction patterns indicated that introduction of BaTiO3 in isovalent donor Sr modified PZT lattice, diminished the tetragonality. All the specimens were homogenous in nature due to the coarse grains of BaTiO3, which had undergone inter-granular growth and were homogeneously distributed within the PSZT–BT lattice. Introduction of BaTiO3 in PSZT perovskite lattice resulted in enhanced grain growth till x = 0.6 (2.03 μm). Dielectric properties (εRT, Tanδ and T c) were influenced by both BaTiO3 and Sr. The maximum εRT = 1588 and εTc = 10478 were found in 0.2PSZT–0.8BT ceramic system. The optimum dielectric permittivity at room temperature with a low Curie transition temperature was found in 0.2PSZT–0.8BT composition. Piezoelectric properties are very sensitive to isovalent substitutions, where isovalent donor Sr modification and BT concentrations in PZT, affected the piezoelectric properties (k p and d 33) in the ceramic system. Thus, the series PSZT–BT compositions could be ideal candidates for capacitors and suitable sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  2. X. Wang, X. Yao, Ferroelectrics 54, 307 (1994)

    Google Scholar 

  3. C.L. Li, C.C. Chou, Integr. Ferroelectrics 55, 955 (2003)

    Article  CAS  Google Scholar 

  4. P.D. Spagnol, M.A. Zaghete, C.O. Paiva-Santos, A.V.C. Andrade, A.A. Cavalheiro, S.M. Tebcherani, J.A. Varela, J. Mater. Res. 17(3), 620 (2002)

    Article  CAS  Google Scholar 

  5. B.K. Gan, J.M. Xue, D.M. Wan, J. Wang, Appl. Phys. A 69, 433 (1999)

    Google Scholar 

  6. A. Kishimoto, S. Seo, Key Eng. Mat. 269, 15 (2004)

    Article  CAS  Google Scholar 

  7. Y. Huang, L. Gao, Y. Hu, H. Du, J. Mater. Sci.: Mat. Electr. 18(6), 605 (2007)

    Article  CAS  Google Scholar 

  8. S.T. Sulepetkar, R.L. Raibagkar, J. Mater. Sci.: Mat. Electr. 18(6), 671 (2006)

    Article  CAS  Google Scholar 

  9. K. Okazaki, Am. Ceram. Soc. Bull. 61, 932 (1982)

    Google Scholar 

  10. T. Ogawa, N. Ujiie, K. Hukuta in Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics ISAF, August 1996, 1(1) (1996) 459

  11. R. Yimnirun, Ferroelectrics 331, 9 (2006)

    Article  CAS  Google Scholar 

  12. C. Miclea, C. Tanasoiu, L. Amarande, C.F. Miclea, Ferroelectrics 319, 57 (2005)

    Article  CAS  Google Scholar 

  13. A.G. Luchaninov, A.V. Shilnikov, L.A. Shuvalov, Ferroelectrics 208, 385 (1998)

    Article  Google Scholar 

  14. Y. Xu, Ferroelectric Materials and their Applications (North Holland, Amsterdam, The Netherlands, 1991), pp. 110–150

    Google Scholar 

  15. H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Am. Ceram. Soc. 85(1), 207 (2002)

    Article  CAS  Google Scholar 

  16. H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Eur. Ceram. Soc. 21, 1371 (2001)

    Article  CAS  Google Scholar 

  17. W. Zhu, A.L. Kholkin, P.Q. Mantas, J.L. Baptista, J. Am. Ceram. Soc. 84(8), 1740 (2001)

    Article  CAS  Google Scholar 

  18. L. Hanh, K. Uchino, S. Namura, Jpn. J. Appl. Phys. 17(4), 637 (1978)

    Article  CAS  Google Scholar 

  19. W. Chaisan, S. Ananta, T. Tunkasiri, Cur. Appl. Phys. 4, 182 (2004)

    Article  Google Scholar 

  20. T.R.N. Kutty, V. Ravi, J. Mater. Sci.: Mat. Electr. 2(2), 79 (2004)

    Article  Google Scholar 

  21. L.E. Cross, Mater. Chem. Phys. 43, 108 (1996)

    Article  CAS  Google Scholar 

  22. K. Ramam, M. Lopez, Phys. Stat. Sol. (a) 203(15), 3852 (2006)

    Article  CAS  Google Scholar 

  23. K. Ramam, M. Lopez, J. Phys. D: Appl. Phys. 39, 4466 (2006)

    Article  CAS  Google Scholar 

  24. W.R. Chaisan, W.R. Yimnirun, S. Ananta, D.P. Cann, Mater. Lett. 59, 3732 (2005)

    Article  CAS  Google Scholar 

  25. R. Yimnirun, S. Ananta, S. Chamunglap, Mat. Chem. Phys. 102, 165 (2007)

    Article  CAS  Google Scholar 

  26. W.R. Chaisan, W.R. Yimnirun, S. Ananta, D.P. Cann, Mat. Sci. Engg. B. 132, 300 (2006)

    Article  CAS  Google Scholar 

  27. F. Xia, X. Yao, J. Mater. Sci.: Mat. Electr. 34(14), 3341 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Concepcion for the financial assistance extended in this regard. The authors would also like to thank Ms C N Devi for the technical assistance and valuable suggestions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramam Koduri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koduri, R., Orellana, J.R.A. Dielectric and piezoelectric characterization of PSZT–BT ceramics for capacitor applications. J Mater Sci: Mater Electron 19, 373–378 (2008). https://doi.org/10.1007/s10854-007-9346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9346-x

Keywords

Navigation