GaN based high temperature strain gauges

  • V. Tilak
  • J. Jiang
  • P. Batoni
  • A. Knobloch


Gallium Nitride based electronic devices have several unique properties such as robustness to high temperature, and both strong spontaneous and piezoelectric polarization fields. The polarization effects of Gallium Nitride are stable at high temperatures; therefore, it is an ideal material to fabricate high temperature strain gauges. In this work we have fabricated metal-insulator-semiconductor(MIS) capacitors to be used as a high temperature strain gauge. GaN based MIS capacitors were fabricated and tested both at room and high temperature. The gauge factor was measured to be 75 at room temperature. AlGaN/GaN heterostructures were also used to make MIS capacitors for testing at both room and high temperature. The gauge factors were measured on these devices to be 575 at room temperature, and 361 at 400 °C.


Sapphire Gallium Nitride Gauge Factor Cantilever Structure Finite Element Model Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Margaret Lazzeri, Peter Gipp, Stacey Kennerly, Jason Galea and Pat Sicluna for help in fabrication of the capacitors and Jim Dalpe for help in setting up the cantilever bending system. The authors acknowledge David Esler for packaging the cantilevers for the bending experiments. Discussions with Kevin Matocha are also acknowledged. Support from Joe Kriscuinas and Samhita Dasgupta for this work is gratefully acknowledged.


  1. 1.
    Y.-F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, P. Parikh, IEEE Elect. Dev. Lett. 25, 117 (2004)CrossRefGoogle Scholar
  2. 2.
    A. Zoroddu, F. Bernardini, P. Ruggerone, V. Fiorentini, Phys. Rev. B 64, 045208 (2001)CrossRefGoogle Scholar
  3. 3.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)CrossRefGoogle Scholar
  4. 4.
    M.S. Shur, A.D. Bykhovski, R. Gaska, A. Khan, in Handbook of Thin Film Devices, ed. by C. E.C. Wood, handbook ed. by M.H. Francombe. Hetero-structures for High Performance Devices, vol. 1 (Academic Press, San Diego, 2000), pp. 299–339Google Scholar
  5. 5.
    J. Fraden, Handbook of Modern Sensors, 1st ed. (Springer, New York, 1996)Google Scholar
  6. 6.
    R.P. Strittmatter, R.A. Beach, G.S. Picus, T.C. McGill, J. Appl. Phys. 94, 5958 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernndez-Guilln, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, E. Kohn, IEEE Electr. Dev. Lett. 27, 309 (2006)CrossRefGoogle Scholar
  8. 8.
    B.S. Kang, J. Kim, S. Jang, F. Ren, J.W. Johnson, R.J. Therrien, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthicum, S.N.G. Chu, K. Baik, B.P. Gila, C.R. Abernathy, S.J. Pearton, Appl. Phys. Lett. 86, 253502 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, M.Z. Kauser, D.D. Schroepfer, P.P. Ruden, J. Xie, Y.T. Moon, N. Onojima, H. Morkoç, K.-A. Son, M.I. Nathan, Jour. Appl. Phys. 99, 113706 (2006)CrossRefGoogle Scholar
  10. 10.
    I. Akasaki, H. Amano in Properties, Processing and Applications of GaN and Related Semiconductors, ed by J.H. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetzel (INSPEC, Institution of Electrical Engineers, London, UK, 1999), Chap. 1, pp. 30–34Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.GE Global Research, One Research CircleNiskayunaUSA
  2. 2.Department of Electrical EngineeringUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations