Skip to main content
Log in

A study on the DC electrical properties of PAN-based carbon fiber/polycarbonate composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The DC conductivity and Hall effect studies were used to investigate the nature, type, and development of the charge carriers in conductive polymer composite containing PAN-based carbon fibers of different concentration. The dependence of the electrical conductivity on temperature is characterized by a two-stage electrical conduction process with a semiconducting type of behavior and two activation energies. It was found the measured Hall voltage varies linearly with Hall current with two different signs of slopes. This suggests that a composite of low fiber content is functioning as p-type material, and then changes to n-type with increasing the carbon fiber content more than 15 wt.%. The density of the charge carriers increases with carbon fiber content in a behavior similar to the electrical conductivity for all given composites, showing a percolation phenomenon. The calculated charge carriers density includes both the magnetostatic arising from the polycarbonate matrix and from the free charge carriers themselves. Considering the filled carbon fibers as a random semiconducting material, the results obtained for various composites were described in terms of the band structure model. Other approach of results analysis was based on the composite bulk morphology observed by the SEM microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Margolis, Conductive Polymers and Plastics. (Chapman and Hall, New York, 1988)

    Google Scholar 

  2. R.E. Hummel, Electrical Properties of Materials. (Springer, New York, 1993)

    Google Scholar 

  3. G. Lubin, Handbook of Composites. (Von Nostrand, London, 1990)

    Google Scholar 

  4. R.M. Gill, Carbon Fibers in Composite Materials. (The Plastic Institute, London, 1972)

    Google Scholar 

  5. M.A. Meyers, O.T. Inan, Frontiers in Material Technology. (Elsevier, Amsterdam, 1985)

    Google Scholar 

  6. I. Mort, Electrical Properties of Polymers. (John Wiley, New York, 1982)

    Google Scholar 

  7. J. Delemonte, Technology of Carbon and Graphite Fibers Composite. (Van Nostrand, New York, 1981); Metal/Polymer Composites. (Van Nostrand, New York)

  8. W.D. Callister. Jr., Materials Science and Engineering, 4th edn. (John Wiley & Sons, New York, 1997), chap.19, p. 591

  9. R.A. Crossman, Polym. Eng. Sci. 25, 507 (1985)

    Article  CAS  Google Scholar 

  10. D.M. Bigg, Polym. Eng. Sci. 19, 1188 (1979)

    Article  CAS  Google Scholar 

  11. F. Herman, F. Donald, G. Charles, Encylopedia of Chemical Technology, 3rd edn, vol. 18. (John Wiley & Sons, New York, 1982), p. 616

  12. S.A. Xu, S.C. Tjong, Eur. Polym. J. 34(8), 1143 (1998)

    Article  CAS  Google Scholar 

  13. A. Ahmad, S. Saq’an, Y. Ramadin, A. Zihlif, J. Thermoplast. Compos. Mater. 19, 531 (2006)

    Article  CAS  Google Scholar 

  14. Z.M. Elimat, A.M. Zihlif, J. Phys. D: Appl. Phys. 39, 2824 (2006); Ph.D. Thesis, Physics Department, Jordan University, 2005

  15. M.J. Yasin, A.M. Zihlif, Mater. Sci. Eng. 86, 205 (1987)

    Article  CAS  Google Scholar 

  16. M. Ahmad, A. Zihlif, E. Martuscelli, G. Ragosta, Polym. Compos. 13, 53 (1992)

    Article  CAS  Google Scholar 

  17. S. Yasin, A. Zihlif, G. Ragosta, J. Mater. Sci.: Mater. Electron. 16, 63 (2005)

    Article  CAS  Google Scholar 

  18. Y. Ramadin, A. Zihlif, G. Ragosta, Polym. Int. 34, 145 (1994)

    Article  CAS  Google Scholar 

  19. Y. Ramadin, A. Zihlif, S. Al-Ani, Opt. Mater. 5, 69 (1996)

    Article  CAS  Google Scholar 

  20. M. Makadsi, A. Zihlif, G. Ragosta, J. Mater. Sci. Lett. 15, 547 (1996)

    CAS  Google Scholar 

  21. Y. Ramadin, A. Zihlif, E. Martuscelli, Polym. Test. 17, 35 (1998)

    Article  CAS  Google Scholar 

  22. J.I. Gersten, F.W. Smith, The Physics and Chemistry of Materials. (John Wiley and Sons, New-York, 2001), p. 394

    Google Scholar 

  23. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  24. L. Nicodema, L. Nicolais, G. Romeo, Scafora, Polym. Eng. Sci. 18, 293 (1978)

    Google Scholar 

  25. S.K. Bhattacharya, A.C. Chaklader, Polym. Plast. Technol. Eng. 19, 21 (1982)

    Article  CAS  Google Scholar 

  26. J. Kroschwitz, Electrical and Electronic Properties of Polymers. (John Wiley, New York, 1988), p. 58

    Google Scholar 

  27. L.A. Pendrys, C. Zeller, F. Vogel, J. Mater. Sci. 15, 2103 (1980)

    Article  CAS  Google Scholar 

  28. M.S. Patel, J. Macromol. Sci.:-Phys. B26, 105 (1987)

    Google Scholar 

  29. O. El-Shazly, S. Tawfik, E. El-Wahidy, J. Mater. Sci. 28, 5040 (1993)

    Article  CAS  Google Scholar 

  30. W. Lang, Synth. Met. 34, 491 (1989)

    Article  CAS  Google Scholar 

  31. L.C. Matthew, Ph.D. Thesis, Michigan Technological University, USA, 1998

Download references

Acknowledgments

The authors would like to thank Professor S.R. Al-Ani in Iraq for research cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zihlif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saq’an, S., Zihlif, A.M., Al-Ani, R.S. et al. A study on the DC electrical properties of PAN-based carbon fiber/polycarbonate composites. J Mater Sci: Mater Electron 18, 1203–1209 (2007). https://doi.org/10.1007/s10854-007-9314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9314-5

Keywords

Navigation