A study on the DC electrical properties of PAN-based carbon fiber/polycarbonate composites

  • S. Saq’an
  • A. M. Zihlif
  • R. S. Al-Ani
  • G. Ragosta


The DC conductivity and Hall effect studies were used to investigate the nature, type, and development of the charge carriers in conductive polymer composite containing PAN-based carbon fibers of different concentration. The dependence of the electrical conductivity on temperature is characterized by a two-stage electrical conduction process with a semiconducting type of behavior and two activation energies. It was found the measured Hall voltage varies linearly with Hall current with two different signs of slopes. This suggests that a composite of low fiber content is functioning as p-type material, and then changes to n-type with increasing the carbon fiber content more than 15 wt.%. The density of the charge carriers increases with carbon fiber content in a behavior similar to the electrical conductivity for all given composites, showing a percolation phenomenon. The calculated charge carriers density includes both the magnetostatic arising from the polycarbonate matrix and from the free charge carriers themselves. Considering the filled carbon fibers as a random semiconducting material, the results obtained for various composites were described in terms of the band structure model. Other approach of results analysis was based on the composite bulk morphology observed by the SEM microscopy.


Carbon Fiber Hall Current Hall Effect Measurement Fiber Concentration Charge Carrier Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Professor S.R. Al-Ani in Iraq for research cooperation.


  1. 1.
    J.H. Margolis, Conductive Polymers and Plastics. (Chapman and Hall, New York, 1988)Google Scholar
  2. 2.
    R.E. Hummel, Electrical Properties of Materials. (Springer, New York, 1993)Google Scholar
  3. 3.
    G. Lubin, Handbook of Composites. (Von Nostrand, London, 1990)Google Scholar
  4. 4.
    R.M. Gill, Carbon Fibers in Composite Materials. (The Plastic Institute, London, 1972)Google Scholar
  5. 5.
    M.A. Meyers, O.T. Inan, Frontiers in Material Technology. (Elsevier, Amsterdam, 1985)Google Scholar
  6. 6.
    I. Mort, Electrical Properties of Polymers. (John Wiley, New York, 1982)Google Scholar
  7. 7.
    J. Delemonte, Technology of Carbon and Graphite Fibers Composite. (Van Nostrand, New York, 1981); Metal/Polymer Composites. (Van Nostrand, New York)Google Scholar
  8. 8.
    W.D. Callister. Jr., Materials Science and Engineering, 4th edn. (John Wiley & Sons, New York, 1997), chap.19, p. 591Google Scholar
  9. 9.
    R.A. Crossman, Polym. Eng. Sci. 25, 507 (1985)CrossRefGoogle Scholar
  10. 10.
    D.M. Bigg, Polym. Eng. Sci. 19, 1188 (1979)CrossRefGoogle Scholar
  11. 11.
    F. Herman, F. Donald, G. Charles, Encylopedia of Chemical Technology, 3rd edn, vol. 18. (John Wiley & Sons, New York, 1982), p. 616Google Scholar
  12. 12.
    S.A. Xu, S.C. Tjong, Eur. Polym. J. 34(8), 1143 (1998)CrossRefGoogle Scholar
  13. 13.
    A. Ahmad, S. Saq’an, Y. Ramadin, A. Zihlif, J. Thermoplast. Compos. Mater. 19, 531 (2006)CrossRefGoogle Scholar
  14. 14.
    Z.M. Elimat, A.M. Zihlif, J. Phys. D: Appl. Phys. 39, 2824 (2006); Ph.D. Thesis, Physics Department, Jordan University, 2005Google Scholar
  15. 15.
    M.J. Yasin, A.M. Zihlif, Mater. Sci. Eng. 86, 205 (1987)CrossRefGoogle Scholar
  16. 16.
    M. Ahmad, A. Zihlif, E. Martuscelli, G. Ragosta, Polym. Compos. 13, 53 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Yasin, A. Zihlif, G. Ragosta, J. Mater. Sci.: Mater. Electron. 16, 63 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Ramadin, A. Zihlif, G. Ragosta, Polym. Int. 34, 145 (1994)CrossRefGoogle Scholar
  19. 19.
    Y. Ramadin, A. Zihlif, S. Al-Ani, Opt. Mater. 5, 69 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Makadsi, A. Zihlif, G. Ragosta, J. Mater. Sci. Lett. 15, 547 (1996)Google Scholar
  21. 21.
    Y. Ramadin, A. Zihlif, E. Martuscelli, Polym. Test. 17, 35 (1998)CrossRefGoogle Scholar
  22. 22.
    J.I. Gersten, F.W. Smith, The Physics and Chemistry of Materials. (John Wiley and Sons, New-York, 2001), p. 394Google Scholar
  23. 23.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials. (Clarendon Press, Oxford, 1979)Google Scholar
  24. 24.
    L. Nicodema, L. Nicolais, G. Romeo, Scafora, Polym. Eng. Sci. 18, 293 (1978)Google Scholar
  25. 25.
    S.K. Bhattacharya, A.C. Chaklader, Polym. Plast. Technol. Eng. 19, 21 (1982)CrossRefGoogle Scholar
  26. 26.
    J. Kroschwitz, Electrical and Electronic Properties of Polymers. (John Wiley, New York, 1988), p. 58Google Scholar
  27. 27.
    L.A. Pendrys, C. Zeller, F. Vogel, J. Mater. Sci. 15, 2103 (1980)CrossRefGoogle Scholar
  28. 28.
    M.S. Patel, J. Macromol. Sci.:-Phys. B26, 105 (1987)Google Scholar
  29. 29.
    O. El-Shazly, S. Tawfik, E. El-Wahidy, J. Mater. Sci. 28, 5040 (1993)CrossRefGoogle Scholar
  30. 30.
    W. Lang, Synth. Met. 34, 491 (1989)CrossRefGoogle Scholar
  31. 31.
    L.C. Matthew, Ph.D. Thesis, Michigan Technological University, USA, 1998Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Saq’an
    • 1
  • A. M. Zihlif
    • 2
  • R. S. Al-Ani
    • 3
  • G. Ragosta
    • 4
  1. 1.Physics DepartmentJordan University of Science & TechnologyIrbidJordan
  2. 2.Physics DepartmentUniversity of JordanAmmanJordan
  3. 3.Department of PhysicsUniversity of BaghdadBaghdadIraq
  4. 4.ICTP of CNRNapoliItaly

Personalised recommendations