Advertisement

Negative photoinduced current and negative differential characteristics of new optoelectronic sensors with InAs/GaAs nanostructure for visual recognition

  • Y. Matsui
  • Y. Miyoshi
Article

Abstract

Negative photo-induced currents and negative differential characteristics of photoinduced current have been obtained successfully under weak photoexcitations at 300 K for a new optoelectronic sensor including a carrier-storage layer of InAs/GaAs short period superlattice. The phenomena are useful to imitate the selectivity functions in visual recognition, which is based on the difference-of-Gaussian functionlike distribution of light sensitivity in the receptive fields in visual cortex. The phenomena are strongly dependent on the material of the carrier-storage layer, where the photogenerated carriers are separated spatially due to the Schottky forward voltage. The carrier separation is more enhanced as the ratio of electron mobility to hole mobility becomes higher for the material of the carrier-storage layer. This means the In-rich InGaAs material is superior to the Ga-rich one. In addition, compared with In x Ga1-x As alloy, the improved surface morphology, the high electron mobility at room temperature and the narrow energy bandgap are observed in the case of InAs/GaAs short period superlattice. That is the InAs/GaAs short period superlattice is superior to In x Ga1-x As alloy as the material for the carrier-storage layer.

Keywords

GaAs Alloy Layer Photogenerated Carrier Large Lattice Mismatch Bare Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Fitzpatrick, J.S. Lund, G.C. Blasdel, J. Neurosci. 5, 3329 (1985)Google Scholar
  2. 2.
    D.J. Felleman, D.C. Van Essen, Cerebral Cortex 1, 1 (1991)CrossRefGoogle Scholar
  3. 3.
    D.C. Van Essen, J.L. Gallant, Neuron 13, 1 (1994)CrossRefGoogle Scholar
  4. 4.
    J. Hopfield, in Proceedings of National Academy of Science USA, 79, 2554 (1982)Google Scholar
  5. 5.
    S. Amari, K. Kurata, H. Nagaoka, IEEE Trans. Neural Networks 3, 260 (1992)CrossRefGoogle Scholar
  6. 6.
    S. Grossberg, Neural Network 16, 925 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Kameda, T. Yagi, in Proc. Int. Joint Conf. on Neural Networks 201 (2001) Google Scholar
  8. 8.
    A.K. Boahen, J. Analog Integrated Circuits Signal Processing 30, 121 (2002)CrossRefGoogle Scholar
  9. 9.
    M.C. Higgins, C. Koch, Analog Integrated Circuits Signal Processing 24, 195 (2000)CrossRefGoogle Scholar
  10. 10.
    C.Y. Wu, C.T. Chiang, IEEE Sensors J. 4, 510 (2004)CrossRefGoogle Scholar
  11. 11.
    V.A. Casagrande, Trends Neurosci. 17, 305 (1994)CrossRefGoogle Scholar
  12. 12.
    M. Weliky, W.H. Bosking, D. Fitzpatrick, Nature 379, 725 (1996)CrossRefGoogle Scholar
  13. 13.
    E. H. Adelson, J. R. Bergen, in In computational models of visual processing (MIT Press, 1991)Google Scholar
  14. 14.
    R. Shapley, Neural Networks 17, 615 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Matsui, Y. Miyoshi, in Proceedings of the 4th IEEE Conference Sensors, California, 873 (2005) Google Scholar
  16. 16.
    S. Raghavan, D. Forman, P. Hill, N.R. Weisse-Bernstein, G. von Winckel, P. Rotella, S. Krishna, J. Appl. Phys. 96, 1036 (2004)CrossRefGoogle Scholar
  17. 17.
    X.-k. Cheng, J. Zhang, Q. Huang, J. Phys. D: Appl. Phys. 38, 1989 (2005)Google Scholar
  18. 18.
    E.E. Mendez, F. Agulló-Rueda ,J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988)CrossRefGoogle Scholar
  19. 19.
    Y. Matsui, K. Kusumi, J. Appl. Phys. 78, 7137 (1995)CrossRefGoogle Scholar
  20. 20.
    Y. Matsui, H. Hayashi, K. Kikuchi, K. Yoshida, Surf. Sci. 174, 600 (1986)CrossRefGoogle Scholar
  21. 21.
    Y. Matsui, Y. Kusumi, Phys. Rev. B 48, 8827 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Collaborative Research CenterThe University of Shiga PrefectureHikone-cityJapan

Personalised recommendations