Electrical properties of some Y2O3 and/or Fe2O3-containing lithium silicate glasses and glass-ceramics

  • Mohamed M. Gomaa
  • Hussein Darwish
  • Saad M. Salman


The ac electrical properties of some lithium silicate glasses and glass-ceramics containing varying proportions of Y2O3 and/or Fe2O3 were measured to investigate their electronic hopping mechanism. There is a clear variation of these properties with composition. The obtained results were related to the concentration and role of Y2O3 and/or Fe2O3 in the lithium silicate glass structure. In crystalline solids the electrical properties data obtained were correlated to the type and content of the mineral phases formed as indicated by X-ray diffraction analysis (XRD).

The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 30 Hz–100 KHz and the effect of compositional changes on the measured properties was investigated. The measurements revealed that the electrical responses of the samples were different and complex. The addition of Y2O3 generally, decreased the ac conductivity, dielectric constant and dielectric losses of the lithium silicate glasses. The addition of Fe2O3 in Y2O3-containing glasses increases the conductivity, while, the dielectric constant and dielectric losses were found to be decreased. However, the addition of Fe2O3 instead of Y2O3 led to decrease the ac conductivity and increased their dielectric constant and dielectric losses.

The obtained data were argued to the internal structure of the lithium silicate glass and the nature or role-played by weakness or rigidity of the structure of the sample.

Lithium disilicate-Li2Si2O5, lithium metasilicate-Li2SiO3, two forms of yttrium silicate Y2Si2O7 & Y2SiO5, iron yttrium oxide-YFeO3, lithium iron silicate-LiFeSi2O6 and α-quartz phases were mostly developed in the crystallized glasses.

The conductivity of the crystalline materials was found to be relatively lower than those of the glass. At low frequency, as the Y2O3 content increased the ac conductivity, dielectric constant and dielectric loss data of the glass-ceramics decreased. However, the addition of Fe2O3 to the Y2O3 containing glass-ceramic led to increase the conductivity. The addition of high content of Fe2O3 instead of Y2O3 in the glass ceramic led to increase the ac conductivity.


Fe2O3 Dielectric Constant Y2O3 Dielectric Loss Glass Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.M. Gomaa, S.A. Hussain, E.A. El- Diwany, A.E. Bayoumi, M. Ghobashy, Presented at the 69th Annual International Meeting: Society of Exploration Geophysics (SEG) and International Exposition, Session “Borehole/Rock Physics characterization of rock and fluid properties”, Oral PHRP7, Oct. 31–Nov. 5 (Houston, Texas, 1999) 204–207Google Scholar
  2. 2.
    P.N. Sen, C. Scala, M.H. Cohen, Geophys. 46(5), 781–795 (1981)CrossRefGoogle Scholar
  3. 3.
    W.E. Kenyon, J. Applied Phys. 55, 3153–3159 (1984)CrossRefGoogle Scholar
  4. 4.
    R. Knight, A. Nur, Geophys. 52(5), 644–654 (1987)CrossRefGoogle Scholar
  5. 5.
    P.W. McMillan, Glass-ceramics (Academic Press, London, N.Y., 1979)Google Scholar
  6. 6.
    E. Haslund, B.D. Hansen, R. Hilfer, B.J. Nost, J. Appl. Phys., 76, 5473–5480 (1994)CrossRefGoogle Scholar
  7. 7.
    B. Nettelblad, G.A. Niklasson, J. Phys.: Condens. Matter, 8, 2781–2790 (1996)CrossRefGoogle Scholar
  8. 8.
    M.B. Volf, Mathematical approach to glass, glass science and technology, vol. 9 (Elsevier Science Publishing Co., Inc., New York, 1988)Google Scholar
  9. 9.
    J.D. Mackenzie, J. Am. Ceram. Soc. 47(5), 211–214 (1964)CrossRefGoogle Scholar
  10. 10.
    K.W. Hansen, M.T. Splann, J. Electrochem. Soc. 113(9), 895–899 (1966)CrossRefGoogle Scholar
  11. 11.
    L.A. Grechanik, E.A. Fainberg, I.N. Zertsalova, Sov. Phys.-Solid State (Engl. Transl.) 4(2), 331–333 (1962)Google Scholar
  12. 12.
    G.O. Karapetyan, V.A. Tsekhomskii, D.M. Yudin, Sov. Phys.-Solid State (Engl. Transl.) 5(2), 456–460 (1963)Google Scholar
  13. 13.
    J. Wong, C.A. Angell, Glass structure by spectroscopy (Marcel Dekker, New York, 1967)Google Scholar
  14. 14.
    H. Darwish, M.M. Gomaa, J. Mater. Sci.: Mater. Electron. 17(1), 35–42 (2006)CrossRefGoogle Scholar
  15. 15.
    M.A. Kanehisa, J. Non-Cryst. Solids 151, 155–159 (1992)CrossRefGoogle Scholar
  16. 16.
    S.N. Salama, Z.S. El-Mandouh, Bull. NRC, Egypt 18(3), 211–224 (1993)Google Scholar
  17. 17.
    L. L. Hench H.F. Shaake, in Introduction to glass science, ed. by L.D. Pye and Co. (Plenum Press, New York, 1972), p. 583Google Scholar
  18. 18.
    A.M. Nasser, S.S.H. Gomaa, S.M. Salman, F. Mostafa, Glass and Ceramic Bull. 30(3), 62 (1983)Google Scholar
  19. 19.
    K. Zirkelbach, R. Breuckner, Glastech. Ber. 61(1), 12 (1988)Google Scholar
  20. 20.
    V.N. Kondrative, Bond dissociation energies, ionization potentials and electron affinities (Manka, Moscow, 1974)Google Scholar
  21. 21.
    O.H. El-Bayoumi, R.K MacCrone, J. Am. Ceram. Soc. 59(9–10), 386–391 (1976)CrossRefGoogle Scholar
  22. 22.
    M. EL-Desoky, J. Phys. Chem. Solids 59(9), 1659–1666 (1998)CrossRefGoogle Scholar
  23. 23.
    A.A Zaky, R. Hawley, Dielectric solid, (Routledge and Kegan Paul Ltd, London, 1970), p. 37Google Scholar
  24. 24.
    H.K. Patel, S.W. Martin, Phys. Rev. B, 45, 10292–10300 (1992)CrossRefGoogle Scholar
  25. 25.
    P. Balaya, V.K. Shrikhande, G.P. Kothiyal, P.S. Goyal, Curr. Sci. 86(4), 553–556 (2004)Google Scholar
  26. 26.
    C.I. Merzbacher, W.B. White, J. Non-Cryst. Solids 130, 18–34 (1991)CrossRefGoogle Scholar
  27. 27.
    Y. Kato, H. Yamazaky, M. Tomozawa, J. Am. Ceram. Soc. 84(9), 2111–2116 (2001)CrossRefGoogle Scholar
  28. 28.
    S. Fujita, Y. Kato, M. Tomozawa, J. Non-Cryst. Solids 328, 64–70 (2003)CrossRefGoogle Scholar
  29. 29.
    R.A.B. Devine, J. Non-Cryst. Solids 152, 50 (1993)CrossRefGoogle Scholar
  30. 30.
    M. Rokita, M. Hanke, W. Mozgawa, J. Mol. Struct. 511/512, 277–280 (1999)CrossRefGoogle Scholar
  31. 31.
    E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, J. Phys. Chem. 91(22), 5807–5813 (1987)CrossRefGoogle Scholar
  32. 32.
    K. El-Egili, Physica B 325, 340–348 (2003)CrossRefGoogle Scholar
  33. 33.
    M.A. Villegas, J.M. Fernandez Navarro, J. Non-Cryst. Solids 100(1–3), 453–460 (1988)CrossRefGoogle Scholar
  34. 34.
    Z. Strnad, Glass-ceramics materials, in glass science and technology, vol. 8 (Elsevier, Amsterdam, The Netherlands, 1986), pp. 185–252Google Scholar
  35. 35.
    A.P. Barranco, F.C. Pinar, O.P. Martinez, J.S. Guerra, I. Carmenate, J. Euro. Ceram. Soc. 19, 2677–2683 (1999)CrossRefGoogle Scholar
  36. 36.
    L. L. Hench, S.W. Freiman, D.L. Kinser, Phys. Chem. Glasses, 12, 58 (1971)Google Scholar
  37. 37.
    S.N. Salama, S.M. Salman, Ceramugia XVII(3/4),122 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mohamed M. Gomaa
    • 1
  • Hussein Darwish
    • 2
  • Saad M. Salman
    • 2
  1. 1.Geophysical Sciences DepartmentNational Research CentreCairoEgypt
  2. 2.Glass Research DepartmentNational Research CentreCairoEgypt

Personalised recommendations