Effect of ZnO addition on properties of cordierite-based glass-ceramics

  • Guo-hua Chen


The influences of addition of ZnO on sintering, crystallization behavior and properties of cordierite-based glass-ceramics were investigated. Results show that with increasing ZnO content, the batch melting temperature, glass transition temperature and crystallization temperature all decrease. Addition of ZnO can greatly improve the sinterability of the glass powders and alter the type of the crystalline phases. Addition of 1.5 wt% ZnO seems to be reasonable. Thermal expansion coefficients (TCEs) of samples increase with increasing ZnO contents. The density was found to be an important factor affecting the dielectric loss of the samples. Dielectric constant and TCEs of the sintered bulk samples were found to depend on their relative densities and crystalline phases. The samples doped with 1.5–3.0 wt% ZnO sintered at 950 °C has a low dielectric constant (5.0–5.2), a low dielectric loss (≤0.0018) and a low thermal expansion coefficient (3.6–4.8 × 10−6 K−1), which are promising electronic packaging materials.


Cordierite Cristobalite Glass Powder Lithium Aluminosilicate Cristobalite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Natural Science Foundation of Guangxi Province, China, under contract No.: 0339066.


  1. 1.
    A.H. Kumar, P.W. McMillan, R.R. Tummala, US Pat. 4301324, November 1981Google Scholar
  2. 2.
    S.H. Knickerbocker, A.H. Kumar, L.W. Herron, Am. Ceram. Soc. Bull. 72, 90 (1993) Google Scholar
  3. 3.
    R.R. Tummala, J. Am. Ceram. Soc. 74, 905 (1991) CrossRefGoogle Scholar
  4. 4.
    Y. Shimade, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, T. Watari, IEEE Trans. Compon. Hybrids Manuf. Technol. 6, 382 (1983) CrossRefGoogle Scholar
  5. 5.
    D.R. Bridged Holland, P.W. McMillan, Glass Technol. 26, 286 (1985)Google Scholar
  6. 6.
    H.K. Sarah, H.K. Ananda, L.W. Herron, Am. Ceram. Soc. Bull. 72, 90 (1993)Google Scholar
  7. 7.
    M. Okuyama, T. Fukui, C. Sakurai, J. Mater. Sci. 28, 4465 (1993) CrossRefGoogle Scholar
  8. 8.
    Mei S., Yang J., Ferreira J.M.F, Meter. Lett. 47, 205 (2001)CrossRefGoogle Scholar
  9. 9.
    W. Zdaniewski, J. Am. Ceram. Soc. 58, 163 (1975)CrossRefGoogle Scholar
  10. 10.
    S.B. Sohn, S.Y. Choi, J. Non-Cryst. Solids 282, 221 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Hu, H.T. Tsai, J. Mater. Sci. 36, 123 (2001)CrossRefGoogle Scholar
  12. 12.
    C.F. Yang, C.M. Cheng, Ceram. Int. 25, 383 (1999)CrossRefGoogle Scholar
  13. 13.
    G.H. Chen, X.Y. Liu, J. Mater. Sci: Mater. Elelc. 15, 595 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Wang, W. Xu, J. Non-Cryst. Solids 80, 237 (1986)CrossRefGoogle Scholar
  15. 15.
    A.A. Omar, A.W.A. El-Shennavi, A.R. El-Ghannam, J. Mater. Sci. 26, 6049 (1991)CrossRefGoogle Scholar
  16. 16.
    Northwest Institute of Light Industry, Glass Technology (in Chinese) (China Light Industry Press, Beijing, 1982)Google Scholar
  17. 17.
    J.H. Jean, T.K. Gupta, J. Am. Ceram. Soc. 76, 2010 (1993)CrossRefGoogle Scholar
  18. 18.
    A.A. EI-Kheshen, Br. Ceram. Trans. 102, 205 (2003)CrossRefGoogle Scholar
  19. 19.
    L.S. Chen, S.L. Fu, Jpn. J. Appl. Phys. 31, 3917 (1992)CrossRefGoogle Scholar
  20. 20.
    S.J. Penn, N.M. Alford, A. Templeton, J. Am. Ceram. Soc. 80, 1885 (1997)CrossRefGoogle Scholar
  21. 21.
    L.R. Pinckney, J. Non-Cryst. Solids 255, 171 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Information Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinP.R. China

Personalised recommendations