Skip to main content
Log in

A new binderless thick-film piezoelectric paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents an investigation into a screen printable piezoelectric paste formulated from a blend of PZT-Pz29 powders of different mean particle size mixed in an organic vehicle. In order to enhance d33 properties of the thick-film (a piezoelectric coefficient), no binder material was mixed into the paste. The d33 coefficient and maximum applied electrical field of devices processed at peak temperatures of 150, 200, 750, 850 and 1,000°C were measured and the film adhesion assessed using scratch and tape tests. The applications that would benefit from these enhanced properties are also discussed. The thick-films produced at these processing temperatures showed good adhesion to 96% alumina substrates. They also showed the ability to withstand high electrical fields and a significant enhancement in d33 when compared to thick-film materials processed at similar temperatures using polymer or glass binders. A maximum average d33 value of 168pCN−1 was obtained for samples processed at a peak temperature of 1,000°C. This is 28% higher than the reported d33 value for a conventional piezoelectric thick-film processed at the same temperature. All samples withstood electric field strengths of over 14 MVm−1 which is between 2.5 and 4.5 times higher than that used for conventional piezoelectric thick-films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Available at: http://www.morganelectroceramics.com/access-pzbook.html (2005). Accessed on 26/10/2006

  2. Available at: http://www.ferroperm-piezo.com/ (2006). Accessed on 26/10/2006

  3. Available at: http://www.solbraze.com/ (2006). Accessed on 26/10/2006

  4. K. Tanaka, T. Konishi, M. Ide, Z. Meng, S. Sugiyama, Jpn. J. Appl. Phys. 44, 7068 (2005)

    Article  CAS  Google Scholar 

  5. F. Levassort, T. Bove, E. Ringgaard, J. Tran-Huu-Hue, J. Holc, M.A. Lethiecq, in 2003 IEEE Ultrasonics Symposium, Honolulu, October 2003, p. 2003

  6. W.W. Wolny, in 12th IEEE International Symposium on Applications of Ferroelectrics, Institute of Electrical and Electronics Engineers Inc., Honolulu, July/August 2000, p. 257

  7. M. Es-Souni, M. Kuhnke, A. Piorra, C.H. Solterbeck, J. Eur. Ceramic Soc. 25, 2499 (2005)

    Article  CAS  Google Scholar 

  8. J.M. Hale, J.R. White, R. Stephenson, F. Liu, J. Mech. Eng. Sci. 219, 1 (2005)

    CAS  Google Scholar 

  9. P.J. Holmes, in “Hand book of thick-film technology” (Electrochemical Publications, Ayr, 1976)

  10. Available at: http://www.ferro.com/ (2006). Accessed on 26/10/2006

  11. T. Papakostas, N. White, Sensor Rev. 20, 135 (2000)

    Article  Google Scholar 

  12. T.V. Papakostas, N.M. White, IEEE T. Compon. Pack. T. 24, 67 (2001)

    Article  CAS  Google Scholar 

  13. P. Ueberschlag, Sensor Rev. 21, 118 (2001)

    Article  Google Scholar 

  14. B. Xu, D. White, J. Zesch, A. Rodkin, S. Buhler, J. Fitch, K. Littau, Appl. Phys. Lett. 87, 192902 (2005)

    Article  Google Scholar 

  15. B. Xu, in 106th Annual Meeting of the American Ceramic Society, American Ceramic Society, April 2004 (Westerville, Indianapolis, 2005), p. 245

  16. R. Torah, S.P. Beeby, N.M. White, IEEE T. Ultrason. Ferr. 52, 10 (2005)

    Article  Google Scholar 

  17. R.N. Torah, Eurosensors XVI, Prague, September 2002 (Elsevier, Prague, 2004), p. 378

  18. R.N. Torah, Ph.D., University of Southampton, 2004

  19. Available at: http://www.electroscience.com/ (2004). Accessed on 26/10/2006

  20. Available at: http://www.take-control.demon.co.uk/ (2006). Accessed on 26/10/2006

  21. P. Dargie, R. Sion, J. Atkinson, N. White, Microelectron. Int. 15, 6 (1998)

    Article  CAS  Google Scholar 

  22. J.J. O’Dwyer in “The Theory of Electrical Conduction and Breakdown in Solid Dielectrics” (Clarendon press, Oxford, 1973) p. 271

  23. Available at: http://www.trstechnologies.com/Materials/piezoceramics.php (2006). Accessed on 2/11/2006

  24. M. Koch, N. Harris, R. Maas, A.G.R. Evans, N.M. White, A. Brunnschweiler, Meas. Sci. Technol. 8, 49 (1997)

    Article  CAS  Google Scholar 

  25. D.P.J. Cotton, P.H. Chappell, A. Cranny, N.M. White, S.P. Beeby, IEEE Sensors J. (in press)

  26. S.P. Beeby, N.J. Grabham, N.M. White, Sensor Rev. 21, 33 (2001)

    Article  Google Scholar 

  27. P. Glynne-Jones, S.P. Beeby, P. Dargie, T. Papakostas, N.M. White, Meas. Sci. Technol. 11, 526 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Elena Koukharenko for her help taking SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl P. J. Cotton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotton, D.P.J., Chappell, P.H., Cranny, A. et al. A new binderless thick-film piezoelectric paste. J Mater Sci: Mater Electron 18, 1037–1044 (2007). https://doi.org/10.1007/s10854-007-9275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9275-8

Keywords

Navigation