A new binderless thick-film piezoelectric paste

  • Darryl P. J. Cotton
  • Paul H. Chappell
  • Andy Cranny
  • Neil M. White


This paper presents an investigation into a screen printable piezoelectric paste formulated from a blend of PZT-Pz29 powders of different mean particle size mixed in an organic vehicle. In order to enhance d33 properties of the thick-film (a piezoelectric coefficient), no binder material was mixed into the paste. The d33 coefficient and maximum applied electrical field of devices processed at peak temperatures of 150, 200, 750, 850 and 1,000°C were measured and the film adhesion assessed using scratch and tape tests. The applications that would benefit from these enhanced properties are also discussed. The thick-films produced at these processing temperatures showed good adhesion to 96% alumina substrates. They also showed the ability to withstand high electrical fields and a significant enhancement in d33 when compared to thick-film materials processed at similar temperatures using polymer or glass binders. A maximum average d33 value of 168pCN−1 was obtained for samples processed at a peak temperature of 1,000°C. This is 28% higher than the reported d33 value for a conventional piezoelectric thick-film processed at the same temperature. All samples withstood electric field strengths of over 14 MVm−1 which is between 2.5 and 4.5 times higher than that used for conventional piezoelectric thick-films.


Electric Field Strength Piezoelectric Material Bottom Electrode Scratch Test Binder Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr Elena Koukharenko for her help taking SEM micrographs.


  1. 1.
    Available at: (2005). Accessed on 26/10/2006Google Scholar
  2. 2.
    Available at: (2006). Accessed on 26/10/2006Google Scholar
  3. 3.
    Available at: (2006). Accessed on 26/10/2006Google Scholar
  4. 4.
    K. Tanaka, T. Konishi, M. Ide, Z. Meng, S. Sugiyama, Jpn. J. Appl. Phys. 44, 7068 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Levassort, T. Bove, E. Ringgaard, J. Tran-Huu-Hue, J. Holc, M.A. Lethiecq, in 2003 IEEE Ultrasonics Symposium, Honolulu, October 2003, p. 2003Google Scholar
  6. 6.
    W.W. Wolny, in 12th IEEE International Symposium on Applications of Ferroelectrics, Institute of Electrical and Electronics Engineers Inc., Honolulu, July/August 2000, p. 257Google Scholar
  7. 7.
    M. Es-Souni, M. Kuhnke, A. Piorra, C.H. Solterbeck, J. Eur. Ceramic Soc. 25, 2499 (2005)CrossRefGoogle Scholar
  8. 8.
    J.M. Hale, J.R. White, R. Stephenson, F. Liu, J. Mech. Eng. Sci. 219, 1 (2005)Google Scholar
  9. 9.
    P.J. Holmes, in “Hand book of thick-film technology” (Electrochemical Publications, Ayr, 1976)Google Scholar
  10. 10.
    Available at: (2006). Accessed on 26/10/2006Google Scholar
  11. 11.
    T. Papakostas, N. White, Sensor Rev. 20, 135 (2000)CrossRefGoogle Scholar
  12. 12.
    T.V. Papakostas, N.M. White, IEEE T. Compon. Pack. T. 24, 67 (2001)CrossRefGoogle Scholar
  13. 13.
    P. Ueberschlag, Sensor Rev. 21, 118 (2001)CrossRefGoogle Scholar
  14. 14.
    B. Xu, D. White, J. Zesch, A. Rodkin, S. Buhler, J. Fitch, K. Littau, Appl. Phys. Lett. 87, 192902 (2005)CrossRefGoogle Scholar
  15. 15.
    B. Xu, in 106th Annual Meeting of the American Ceramic Society, American Ceramic Society, April 2004 (Westerville, Indianapolis, 2005), p. 245Google Scholar
  16. 16.
    R. Torah, S.P. Beeby, N.M. White, IEEE T. Ultrason. Ferr. 52, 10 (2005)CrossRefGoogle Scholar
  17. 17.
    R.N. Torah, Eurosensors XVI, Prague, September 2002 (Elsevier, Prague, 2004), p. 378Google Scholar
  18. 18.
    R.N. Torah, Ph.D., University of Southampton, 2004Google Scholar
  19. 19.
    Available at: (2004). Accessed on 26/10/2006Google Scholar
  20. 20.
    Available at: (2006). Accessed on 26/10/2006Google Scholar
  21. 21.
    P. Dargie, R. Sion, J. Atkinson, N. White, Microelectron. Int. 15, 6 (1998)CrossRefGoogle Scholar
  22. 22.
    J.J. O’Dwyer in “The Theory of Electrical Conduction and Breakdown in Solid Dielectrics” (Clarendon press, Oxford, 1973) p. 271Google Scholar
  23. 23.
    Available at: (2006). Accessed on 2/11/2006Google Scholar
  24. 24.
    M. Koch, N. Harris, R. Maas, A.G.R. Evans, N.M. White, A. Brunnschweiler, Meas. Sci. Technol. 8, 49 (1997)CrossRefGoogle Scholar
  25. 25.
    D.P.J. Cotton, P.H. Chappell, A. Cranny, N.M. White, S.P. Beeby, IEEE Sensors J. (in press)Google Scholar
  26. 26.
    S.P. Beeby, N.J. Grabham, N.M. White, Sensor Rev. 21, 33 (2001)CrossRefGoogle Scholar
  27. 27.
    P. Glynne-Jones, S.P. Beeby, P. Dargie, T. Papakostas, N.M. White, Meas. Sci. Technol. 11, 526 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Darryl P. J. Cotton
    • 1
  • Paul H. Chappell
    • 1
  • Andy Cranny
    • 1
  • Neil M. White
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations