Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers

  • Animesh Jha
  • Shaoxiong Shen
  • Lihui Huang
  • Billy Richards
  • Joris Lousteau


The paper explains the significance of rare-earth (RE) ion-glass host interaction for engineering waveguide devices, which can potentially bring together short fibre or planar waveguides with a single pump source and filters together for designing a fully integrated photonic structure. In this paper we review and exemplify new results in the light of the ion-host interactions in Sm3+-, Er3+-, Tm3+- and Ho3+-doped tellurium and fluorosilicate oxide hosts for photoluminescence analysis at visible, near-IR, and mid-IR wavelengths. The emphasis in this paper is to exploit currently available fibre-pigtailed 980 nm and multimode high-wattage 800 nm pumps for both up and down conversion schemes. Potential applications of these integrated devices are also explained.


Pump Power Bulk Glass Tellurite Glass Upconversion Emission Fluorophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support from the Engineering and Physical Science Research Council for the Platform Grant (GR/T19889/01), the Multi-core fibre (EP/C515226/01) and broadband amplifiers (GR/R31454/01) projects.


  1. 1.
    W.T. Silfvast in Laser Fundamentals, 5th edn, (Cambridge University Press, New York, 2004), Chapters 4 and 5, pp. 89–98, 101–118, 159Google Scholar
  2. 2.
    Y. Ohishi, in Optical Fibre Amplifiers: Materials, Devices, and Applications, (ed.) S. Sudo, (Artech House Inc, Boston, 1997), pp. 166–168Google Scholar
  3. 3.
    S. Jordery, M. Naftaly, A. Jha, J. Non-Crystall. Sol. 196, 199–203 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Naftaly, A. Jha, E.R. Taylor, J. Non-Crystall. Sol. 257, 248–252 (1999)CrossRefGoogle Scholar
  5. 5.
    M.J. Pelegrino, W.M. Yen, M.J. Weber, J. Appl. Phys. 51, 6332 (1980)CrossRefGoogle Scholar
  6. 6.
    S. Shen, A. Jha: Opt Maters 25(3), 321–333, (2004)CrossRefGoogle Scholar
  7. 7.
    L.H. Huang, S.X. Shen, A. Jha, J Non-Crystall. Sol. 345, 349–353 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Shen, A. Jha, E. Zhang, S.J. Wilson, Comptes Rendus Chimie 5(12), 921–938 (2002)CrossRefGoogle Scholar
  9. 9.
    C.X. Bo, C.J. Kai, Opt. Commun., 97, 69–73 (1993)CrossRefGoogle Scholar
  10. 10.
    M.P. Jelonek, R.Q. Fugate, W.J. Lange, A.C. Slavin, R.E. Ruane, R.A. Cleis, J. Opt. Soc. Am. A. 11, 806–812 (1994)CrossRefGoogle Scholar
  11. 11.
    W. Miniscalco in Rare-Earth Doped Fibre Lasers and Amplifiers, 2nd edn (revised and expanded), (ed.) M.J.F Diggonet, (Marcel Dekker, 2003)Google Scholar
  12. 12.
    A. Jha, S. Shen, M Naftaly, Phys. Rev. B 62(10), 6215–6227 (2000)CrossRefGoogle Scholar
  13. 13.
    S Shen, L Huang, P Joshi, A. Jha, Electron. Lett. 39(25), 1797–1799 (2003)CrossRefGoogle Scholar
  14. 14.
    SX Shen, A Jha, LH Huang et al. Opt. Lett. 30(12), 1437–1439 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Komuka, T. Yamamoto, T. Sugawa, Y. Miyajima, Electron. Lett. 29, 110–112 (1993)CrossRefGoogle Scholar
  16. 16.
    S.D. Jackson, Electron. Lett. 37, 13 (2001)Google Scholar
  17. 17.
    B. Richards, S. Shen and A. Jha, SPIE Europe International Symposium on Remote Sensing, Proceedings of SPIE vol.5984, Bruges, 19–20 Sept 2005. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Animesh Jha
    • 1
  • Shaoxiong Shen
    • 1
  • Lihui Huang
    • 1
  • Billy Richards
    • 1
  • Joris Lousteau
    • 1
  1. 1.The Institute for Materials ResearchUniversity of LeedsLeedsUK

Personalised recommendations