Advertisement

Metastable defect creation in tritiated hydrogenated amorphous silicon and the Staebler–Wronski effect

  • S. Costea
  • N. P. Kherani
  • S. Zukotynski
Article
  • 70 Downloads

Abstract

Defect creation through tritium decay in tritiated hydrogenated amorphous silicon provides a unique technique for the study of defect dynamics in hydrogenated amorphous silicon (a-Si:H). Isothermal Capacitance Transient Spectroscopy (ICTS) and Constant Photocurrent Method (CPM) were used to measure the positively charged, D+, and negatively charged, D, states in the gap of a-Si:H:T, respectively. The samples were thermally annealed prior to the measurement of defect state densities. The ICTS experiments showed a decrease in the concentration of positively charged dangling bonds while the CPM measurements showed an increase in the density of D states with time. This increase was much larger than the concentration of decayed tritium atoms. The CPM results also showed that the Urbach energy decreased with time. The decrease in Urbach energy indicates a decrease in the concentration of weak bonds in the valence band tail and suggests weak bond to dangling bond conversion. CPM experiments carried out under bias confirm the role of excess carriers in the defect creation process. The dynamic defect pool model was developed to quantitatively explain the experimental data. The defect evolution in a-Si:H:T is similar to the evolution of defect states in light exposure studies, supporting the interpretation of the Staebler–Wronski effect in terms of weak bond to dangling bond conversion.

Keywords

Tritium Amorphous Silicon Deep Level Transient Spectroscopy Conduction Band Edge Dangling Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported through grants from Ontario Centres of Excellence and Natural Sciences and Engineering Research Council.

References

  1. 1.
    R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling. (Springer, Toronto, 1998)Google Scholar
  2. 2.
    Y. Kuo, Thin film transistors: materials and processes. Kluwer Academic, Toronto, 2004)Google Scholar
  3. 3.
    L.S. Sidhu, T. Kosteski, S. Zukotynski, N. Kherani, J. Appl. Phys. 85, 2574 (1999)CrossRefGoogle Scholar
  4. 4.
    F. Gaspari, T. Kosteski, S. Zukotynski, N.P. Kherani, W.T. Shmayda, Philos. Mag. B 80, 561 (2000)CrossRefGoogle Scholar
  5. 5.
    T. Kosteski, PhD Thesis, University of Toronto (2001)Google Scholar
  6. 6.
    C. Tsang, R.A. Street, Phys. Rev. B 18, 1880 (1978)CrossRefGoogle Scholar
  7. 7.
    J. Whitaker, J. Viner, S. Zukotynski, E. Johnson, P.C. Taylor, S. Stradins, MRS Symp. Proc. 808, A2.4.1 (2004)Google Scholar
  8. 8.
    S. Pisana, S. Costea, T. Kosteski, Shmayda W.T., Kherani N.P, Zukotynski, J. Appl. Phys. 98, 093705 (2005)CrossRefGoogle Scholar
  9. 9.
    G. Mensing, J. Gilligan, P. Hari, E. Hurt, G. Lupke, S. Pantelides, N. Tolk, P.C. Taylor, J. Non-Cryst. Solids 299–302, 621 (2002)CrossRefGoogle Scholar
  10. 10.
    T. Kosteski, N.P. Kherani, F. Gaspari, S. Zukotynski, W.T. Shmayda, J. Vac. Sci. Technol. A 16, 893 (1998)CrossRefGoogle Scholar
  11. 11.
    S. Costea, PhD Thesis, University of Toronto (2006)Google Scholar
  12. 12.
    M. Stutzmann in Properties of Amorphous Silicon and its Alloys, ed. by T. Searle, (INSPEC, The Institution of Electrical Engineers, London, 1998)Google Scholar
  13. 13.
    Y.E. Chen, F.S. Wang, J.W. Tsai, H.C. Cheng, Jpn. J. Appl. Phys. 33, 6727 (1994)CrossRefGoogle Scholar
  14. 14.
    P. Jensen, Solid State Commun. 76, 1301 (1990)CrossRefGoogle Scholar
  15. 15.
    M.J. Powell, S.C. Deane, Phys. Rev. B 48, 10815 (1993)CrossRefGoogle Scholar
  16. 16.
    F. Vaillant, D. Jousse, Phys. Rev. B 34, 4088 (1986)CrossRefGoogle Scholar
  17. 17.
    E.A. Schiff, Philos. Mag. Lett. 55, 87 (1987)CrossRefGoogle Scholar
  18. 18.
    M. Stutzmann, Phys. Rev. B 35, 9735 (1987)CrossRefGoogle Scholar
  19. 19.
    M. Stutzmann, Philos. Mag. B 60, 531 (1989)CrossRefGoogle Scholar
  20. 20.
    K. Winer, Phys. Rev. B 41, 12150 (1990)CrossRefGoogle Scholar
  21. 21.
    G. J. Adriaenssens in Properties of Amorphous Silicon and its Alloys, edited by T. Searle (INSPEC, London, 1998)Google Scholar
  22. 22.
    V. Nadazdy, R. Durny, I. Thurzo, E. Pincik, A. Nishida, J. Shimizu, M. Kumeda, T. Shimizu, Phys. Rev. B 66, 195211 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations