Advertisement

Fabrication and optical characterization of vanadium oxide nano-particulates thin film

  • S. Tanemura
  • L. Miao
  • Y. Kajino
  • Y. Itano
  • M. Tanemura
  • S. Toh
  • K. Kaneko
  • Y. Mori
Article

Abstract

We have succeeded to fabricate the thin films (350 nm in total thickness) consisting of semiconducting Vanadium-oxide (VO0.9+x (0.30≦x < 0.37)) nano-particles with 3.47 nm in averaged diameter by using the combined magnetron sputtering and gas aggregation methods. The optical band gap of the film is evaluated as 3.88 eV under the ad hoc assumption of direct allowed optical transition mode by spectroscopic ellipsometry. This value is expanded by 0.18 eV comparing with the estimated VO bulk value. The widening of band gap might be due to the lattice strain and/or the quantum confinement effect of the composed nano-particles.

Keywords

Vanadium Oxide Spectroscopic Ellipsometry Bulk Layer Compositional Uniformity Amorphous Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported in part by grants from the NITECH 21st Century COE program for ”World Ceramics Center for Environmental Harmony”.

References

  1. 1.
    For an example, “Non-stoichiometric metal compound” appeared in Fundamental Lectures on Solid State Properties of Metal, vol. 15,ed. by Japan Inst. Metals (Maruzen Publishing Co, Tokyo, 1975)Google Scholar
  2. 2.
    F.J. Morin, Bell Sys. Tech. J. 37, 1047 (1958)Google Scholar
  3. 3.
    S. Takeuchi, K. Suzuki, J. Jpn Inst. Met. 33, 409 (1968)Google Scholar
  4. 4.
    M. Gotoh, J. Murakami, Y. Tai, K. Yoshimura, K. Igarashi, S. Tanemura, Z. Phys. D40, 115 (1997)Google Scholar
  5. 5.
    S. Tanemura, K. Kajino, L. Miao, S. Koide, M. Tanemura, S. Toh, K. Kaneko, M. Mori, Eur. J. Phys. D34, 79–82 (2005)Google Scholar
  6. 6.
    H. Haberland, M. Karrais, M. Mall, Z. Phys. D20, 413 (1991)Google Scholar
  7. 7.
    JCPDS-International Centre for Diffraction data, PDF 10–0313Google Scholar
  8. 8.
    JCPDS-International Centre for Diffraction data, PDF 15-0629Google Scholar
  9. 9.
    XPS Data Base of The National Institute of Standards And Technology (NITS), USAGoogle Scholar
  10. 10.
    For an example, G.A. Niklasson, “ Optical properties of inhomogeneous two-component materials” appeared in Materials Science for Solar Energy Conversion Systems, ed. by C.G.Granqvist (Pergamon Press, Oxford, 1991) pp. 7–43Google Scholar
  11. 11.
    A.R. Forouhi, I. Bloomer, Phys. Rev. B38, 1865–1874 (1998)Google Scholar
  12. 12.
    G.E. Jellison. Jr, F.A. Moodie, Appl. Phys. Lett., 69, 371–373 (1996)CrossRefGoogle Scholar
  13. 13.
    For an example, A.R. Forouhi, I. Bloomer, “Calculation of optical constants, n and k, in the interband region” appeared in Handbook of Optical Constants of Solids II ed. by E.D. Palik (Academic Press, NY, 1991) pp. 55–175Google Scholar
  14. 14.
    M. Tazawa, P. Jing, S. Tanemura, Appl. Opt. 37, 1858–1861 (1998)CrossRefGoogle Scholar
  15. 15.
    M.F. Al-Kuhaili, E.E. Khawaja, S.M.A. Durrani, Thin Solid Films 460, 30–35 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Tanemura
    • 1
  • L. Miao
    • 1
  • Y. Kajino
    • 2
  • Y. Itano
    • 2
  • M. Tanemura
    • 2
  • S. Toh
    • 3
  • K. Kaneko
    • 3
  • Y. Mori
    • 4
  1. 1.Japan Fine Ceramics CentreAtsuta-kuJapan
  2. 2.Department of Environmental TechnologyNagoya Institute of TechnologyShowa-kuJapan
  3. 3.Department of Material Science and Engineering & HVEM LabKyushu UniversityHigashi-kuJapan
  4. 4.Materials Research LaboratoryNGK Insulators LtdMizuho-kuJapan

Personalised recommendations