Synthesis and characterization of new 3-alkylthiophene copolymer that exhibit orange-red photoluminescence and electroluminescence

  • Zheng-jian Qi
  • Wei-dong Feng
  • Yue-ming Sun
  • Da-zhi Yan
  • Yan-fang He
  • Jing Yu


Using copolymerization functionalization, a Novel solution-processable π-conjugated 3-alkylthiophene copolymer (molar ratio of monomer 3-octylthiophene (3OT) and 3-(2-ethyl-1-hexyl) thiophene (3EHT) was 1:1) combining electrochemical properties of poly (3-octylthiophene) (P3OT) and poly (3-isooctylthiophene) (P3EHT) was synthesized by FeCl3-oxidative approach. Characterization of the polymers included FT-IR, NMR, gel permeation chromatography (GPC), thermo-gravimetric analysis (TGA), UV-Vis spectroscopy photoluminescence (PL) and electroluminescence (EL). P3OTEHT depicted excellent solubility in common organic solvents. The optical properties investigations showed that the band-gap energy of P3OTEHT was similar to P3OT (2.43 eV) at 2.45 eV and 6% lower than that of P3EHT in CHCl3 solution. The emission maxima of P3OTEHT was 50 nm blue-shifted with respect to that of P3OT. However, the PL intensity of P3OTEHT was seven times higher than that of P3OT in film. The turn-on voltage of LED (ITO/P3OTEHT/Ag) devices was approaching to P3OT (5.5 V) at 5.6 V and 1.9 V lower than that of P3EHT. The EL color of P3OTEHT was bright pure orange-red (emission λ max EL of 600 nm), meanwhile, the half-wave bandwidth was 70 nm. TGA studies showed that P3OTEHT exhibited very good thermal stabilities, losing 5% of its weight on heating to 300 °C. The results indicate that the P3OTEHT with low band-gap energy, low turn-on voltage, high photoluminescence quantum yield pure EL color and processability, and might be promising polymer materials for applications in polymer light-emitting diodes, light-emitting electrochemical cells and polymer solar cells, etc.


Polymer Solar Cell Narrow Molecular Weight Distribution Luminescence Quantum Yield High Photoluminescence Quantum Yield Double Beam Spectro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Doctor Foundation of Ministry of Education of China (20030286012) and the Foundation High-tech Item of Province in Jiang-su of China(BG 2005034).


  1. 1.
    I. Schwendeman, R. Hickman, G. Sonmez, P. Schottland, K. Zong, D. M. Welsh, J.R. Reynolds, Chem. Mater. 14, 3118 (2002)CrossRefGoogle Scholar
  2. 2.
    F. Le Floch, H.A. Ho, P. Harding-Lepage, M. Bedard, R. Neagu-Plesu, M. Leclerc, Adv. Mater. 17, 1249 (2005)CrossRefGoogle Scholar
  3. 3.
    N.C. Greenham, S.C. Moratti, D.D.C. Bradley, R.H. Friend, A.B. Holmes, Nature 365, 628 (1993)CrossRefGoogle Scholar
  4. 4.
    W.D. Feng, Z.J. Qi, Y.M. Sun, J. Appl. Polym. Sci 104, 1169 (2007)CrossRefGoogle Scholar
  5. 5.
    B.S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    B.M.W. Langeveld-Voss, R.A.J. Jannsen, M.P.T. Christiaans, S.C.J. Meskers, H.P.J.M. Dekkers, E.W. Meijer, J. Am. Chem. Soc. 118, 4908 (1996)CrossRefGoogle Scholar
  7. 7.
    F. Padinger, R.S. Rittberger, N.S. Sariciftci, Adv. Funct. Mater. 13,85 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Kim, S. Cook, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, Chem. Mater. 16, 4812 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Gadisa, M. Svensson, M.R. Andersson, O. Inganas, Appl. Phys. Lett. 84, 1609 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys Lett. 87, 083506 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Li, V. Shrotriya, Y. Yao, Y.J. Yang, Appl. Phys. Lett. 98, 043704 (2005)Google Scholar
  12. 12.
    J.L. Bre´das, D. Beljonne, V. Coropceanu, J. Chem. Rev. 104, 4971 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Cik, F.L. Sersen, L. Bartus, Synth. Met. 75, 43 (1995)CrossRefGoogle Scholar
  14. 14.
    K. Tamao, S. Kodama, I. Nakajima, M. Kumada, Tetrahedron. 3, 3347 (1982)CrossRefGoogle Scholar
  15. 15.
    Sugimoto, S. Takeda, H. Gu, K. Yoshino, Chem. Express. 1, 635 (1986)Google Scholar
  16. 16.
    K. Yoshino, S. Nakajima, M. Onoda, R. Sugimoto, Synth. Met. 28, C349 (1989)CrossRefGoogle Scholar
  17. 17.
    J.E. Oesterhoelm, J. Laakso, P. Nyholm, H. Isotalo, H. Stubb, O. Inganaes, W.R. Salaneck, Synth. Met. 28, C435 (1989)CrossRefGoogle Scholar
  18. 18.
    M. Leclerc, F.M. Diaz, G. Wegner, Makromol. Chem. 190, 3150 (1989)CrossRefGoogle Scholar
  19. 19.
    X.Y. Qiao, X.H. Wang, Z.S. Mo, Synth. Met. 122, 452 (2001)CrossRefGoogle Scholar
  20. 20.
    B. Pierrick, H. Patrick, Macromolecules 30, 2685–2692 (1997)CrossRefGoogle Scholar
  21. 21.
    R.C. Fang, Solid State Spectroscopy, Press of China University of Science and Technology, Hefei, China, p. 61 (2001)Google Scholar
  22. 22.
    Y.Y. Hao, H.T. Hao, H. Wang, H.F. Zhou, Spectrosc. Spectral Anal. 24(12), 1524 (2004)Google Scholar
  23. 23.
    J. Li, H.F. Zhou, Y.Y. Hao, H. Wang, Spectrosc. Spectral Anal. 26(2), 235 (2006)Google Scholar
  24. 24.
    H.F. Lu, H.S.O. Chan, S.C. Ng, Macromolecules 36, 1543–1552(2003)CrossRefGoogle Scholar
  25. 25.
    S. Hotta, S.D.D.V Rughooputh, A.J. Heeger, F. Wudl, Macromolecules 20, 212 (1987)CrossRefGoogle Scholar
  26. 26.
    F. Chen, P.G. Metha, L. Takiff, R.D. McCullough, J. Mater Chem 6, 1763 (1996)CrossRefGoogle Scholar
  27. 27.
    S.H. Ahn, S.H. Han, J. Noh, Macromolecules 34, 2522–2527 (2001)CrossRefGoogle Scholar
  28. 28.
    J.T. Christopher, M.A. Maksudul, A.B. Bryan, Macromolecules 37, 3554–3563 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zheng-jian Qi
    • 1
  • Wei-dong Feng
    • 1
  • Yue-ming Sun
    • 1
  • Da-zhi Yan
    • 1
  • Yan-fang He
    • 1
  • Jing Yu
    • 1
  1. 1.Applied Chemical Laboratory, College of Chemistry and Chemical EngineeringSoutheast UniversityNan JingP.R. China

Personalised recommendations