EPR study of V2O5–P2O5–Li2O glass system

  • I. Ardelean
  • O. Cozar
  • N. Vedeanu
  • Dorina Rusu
  • C. Andronache


\({x\hbox{V}_{2}\hbox{O}_{5}\cdot(100-\hbox{x})[\hbox{P}_{2}\hbox{O}_{5}\cdot\hbox{Li}_{2} \hbox{O}]}\) glass system, with 0  <  x \({\le }\) 50 mol%, was prepared and investigated by EPR method. For low content of V2O5 all the spectra present a hyperfine structure typical for isolated V4+ ions. With the increasing of V2O5 content, the EPR absorption signal showing hyperfine structure is superposed by a broad line without hyperfine structure characteristic for clustered ions. At high V2O5 content, the vanadium hyperfine structure disappears and only the broad line can be observed in the spectra.

Spin Hamiltonian parameters g \(\Vert \), g \({\bot}\), A \(\Vert \), A \({\bot}\), dipolar hyperfine coupling parameters, P, and Fermi contact interaction parameters, K, have been calculated.The composition dependence of line widths of the first two absorptions from the parallel band and of the broad line characteristic to the cluster formations was also discussed.


V2O5 Phosphate Glass Hyperfine Structure Glass System Broad Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.W. Martin, Eur. J. Solid State Chem. 28, 163 (1991)Google Scholar
  2. 2.
    L.D. Bogomolova, T.K. Pavulushkina, A.V. Roshchina, J. Non–Cryst. Solids 58, 99 (1983)CrossRefGoogle Scholar
  3. 3.
    P.A. Tick, Phys. Chem. Glasses 25,149 (1984)Google Scholar
  4. 4.
    Y. He, D.E. Day, Glass Technol. 33, 214 (1992)Google Scholar
  5. 5.
    I. Ardelean, O. Cozar, Gh. Ilonca, V. Simon, V. Mih, C. Craciun, S. Simon, J. Mater. Sci. 11, 401 (2000)Google Scholar
  6. 6.
    O. Cozar, I. Ardelean, V. Simon, L. David, V. Mih, N. Vedean, Appl. Magn. Reson, 16, 529 (1999)Google Scholar
  7. 7.
    O. Cozar, I. Ardelean, Gh. Ilonca, Mater. Chem. 7, 755 (1982)CrossRefGoogle Scholar
  8. 8.
    J.E. Garbarczyk, M. Wasiucionek, P. Jóźwiak, L. Tykarski, J.L. Nowiński, Solid State Ionics 154–155, 367 (2002)CrossRefGoogle Scholar
  9. 9.
    R.V.S.S.N Ravikumar, V. Rajagopal Reddy, A.V. Chandrasekhar, B.J. Reddy, Y.P. Reddy, P.S. Rao, J. All. Com. 337, 272 (2002)CrossRefGoogle Scholar
  10. 10.
    V.R. Kumar, R.P.S. Chakradhar, A. Murali, N.O. Gopal, J.L. Rao, Int. J. Modern Phys. B 17, 3003 (2003)Google Scholar
  11. 11.
    N. Vedeanu, O. Cozar, I. Ardelean, S. Filip, J. Optoelectron. Adv. Mat. 8(3), 1135 (2006)Google Scholar
  12. 12.
    H. Hosono, H. Kawazoe, T. Kanazava, J. Non–Cryst. Solids 37, 427 (1980)CrossRefGoogle Scholar
  13. 13.
    D. Kivelson, S.K. Lee, J. Chem. Phys. 41, 1896 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • I. Ardelean
    • 1
  • O. Cozar
    • 1
  • N. Vedeanu
    • 1
  • Dorina Rusu
    • 1
  • C. Andronache
    • 1
    • 2
  1. 1.Faculty of PhysicsBabes-Bolyai UniversityClujRomania
  2. 2.Departament of PhysicsNorth UniversityBaia MareRomania

Personalised recommendations