Advertisement

Comparative studies of defect production in heavily doped silicon under fast electron irradiation at different temperatures

  • V. V. Emtsev
  • P. Ehrhart
  • D. S. Poloskin
  • K. V. Emtsev
Article

Abstract

Production processes of electrically active defects in degenerate silicon subjected to 2.5 MeV electron irradiation at T = 4.2 K and T = 300 K have been studied. The production rates of primary and secondary defects in irradiated samples are analyzed on the basis of the known properties of radiation-produced defects in Si. It has been demonstrated that a striking difference in the production rates of electrically active defects in n- and p-Si under irradiation at cryogenic temperatures may be related to the different fate of Frenkel pairs in both materials. The production rate of primary defects in degenerate Si was found to be between 1.5 cm−1 and 2 cm−1.

Keywords

Removal Rate Fast Electron Electron Irradiation Cryogenic Temperature Primary Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The work was partly supported by Contract No 506962 (FP6-2002-IST−1), Grant of Federal Agency of Science and Innovations “Scientific School – 5920.2006.2”, and Grant of the Russian Foundation of Basic Research No 06-07-89031-a.

References

  1. 1.
    G.D. Watkins, In: R.W. Cahn P Haasen E.J. Kramer, (eds). Mater. Sci and Technology, Vol. 4–5 (Wiley-VCH, 2005), pp. 105–141Google Scholar
  2. 2.
    J.W. MacKay, E.E. Klontz, In: F.L. Vook (eds). Radiation Effects in Semiconductors, (Plenum Press, New York, 1968), pp.175–185Google Scholar
  3. 3.
    J.W. Corbett, J.C. Bourgoin, In: J.H. Crawford Jr, L.M. Slifkin (eds). Point Defects in Solids, (Plenum Press, New York and London,1975), pp. 1–161Google Scholar
  4. 4.
    V.V. Emtsev, T.V. Mashovets, V.V. Mikhnovich, N.A. Vitovskii. Radiat. Eff. and Def. in Solids (Gordon and Breach Science Publishers, 1989), vol. 111–112, pp.99–118Google Scholar
  5. 5.
    L.L. Sivo, E.E. Klontz, Phys. Rev. 178, 1264–1273 (1969)CrossRefGoogle Scholar
  6. 6.
    H. Zillgen. PhD Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Germany (1997)Google Scholar
  7. 7.
    E.L. Elkin, G.D. Watkins, Phys. Rev. 174, 881–897 (1968)Google Scholar
  8. 8.
    L.C. Kimerling, M.T. Asom, J.L. Benton, P.J. Drevinsky, C.E. Caefer, Mater. Sci. Forum vol. 38–41 (Trans Tech Publications, Switzerland, 1989), pp. 141–150Google Scholar
  9. 9.
    J. Adey, R. Jones, D.W. Palmer, P.R. Briddon, S. Öberg, Phys. Rev. B 71, 165211 (2005)CrossRefGoogle Scholar
  10. 10.
    V. Ranki, K. Saarinen, Physica B 340–342, 765–768 (2003)CrossRefGoogle Scholar
  11. 11.
    J.W. Corbett, G.D. Watkins, Phys. Rev. 138, A555–A560 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • V. V. Emtsev
    • 1
  • P. Ehrhart
    • 2
  • D. S. Poloskin
    • 1
  • K. V. Emtsev
    • 3
  1. 1.Ioffe Physicotechnical Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.IFFJűlichGermany
  3. 3.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations