Skip to main content
Log in

Germanium content dependence of the leakage current of recessed SiGe source/drain junctions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of the Ge fraction (x), on the leakage current of recessed Si1−x Ge x p+-n source/drain junctions has been investigated, for a fixed recess depth of 70 nm. It is found that both the bulk and the peripheral leakage current density increase approximately exponentially with increasing Ge content in the range 10–30%. Roughly speaking, the leakage current density increases one decade for every 5% increase in Ge. In case of the bulk leakage current density, this enhancement is shown to be related to the increase in extended defects penetrating the depletion region in the n-type silicon substrate. Transmission Electron Microscopy demonstrates a higher density of dislocations at the epitaxial interface for a higher Ge fraction, which are most likely generated by strain relaxation, induced by the implantation and activation of B in the p+ S/D regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.J. Paul, Semicond. Sci. Technol. 19, R75 (2004)

    Article  CAS  Google Scholar 

  2. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005)

    Article  Google Scholar 

  3. G. Eneman, P. Verheyen, R. Rooyackers, R. Delhougne, R. Loo, M. Caymax, P. Meunier-Beillard, K. De Meyer, W. Vandervorst, Mater. Sci. Semicond. Process. 8, 337 (2005)

    Article  CAS  Google Scholar 

  4. F. Nouri, P. Verheyen, L. Washington, V. Moroz, I. De Wolf, M. Kawaguchi, S. Biesemans, R. Schreutelkamp, Y. Kim, M. Shen, X. Xu, R. Rooyackers, M. Jurczak, G. Eneman, K. De Meyer, L. Smith, D. Pramanik, H. Forstner, S. Thirupapuliyur, G.S. Higashi, in IEDM Techn. Dig. (The IEEE, New York, 2004) p. 1055

  5. G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri, L. Washington, R. Degraeve, B. Kaczer, V. Moroz, A. De Keersgieter, R. Schreutelkamp, M. Kawaguchi, Y. Kim, A. Samoilov, L. Smith, P.P. Absil, K. De Meyer, M. Jurczak, S. Biesemans, in Symp on VLSI Technology Dig. (The IEEE, New York, 2005) p. 22

  6. S. Gannavaram, N. Pesovic, M.C. Öztürk, in 2000 IEDM Techn. Dig. (The IEEE, New York, 2000) p. 437

  7. P.R. Chidambaram, B.A. Smith, L.H. Hall, H. Bu, S. Chakravarthi, Y. Kim, A.V. Samoilov, A.T. Kim, P.J. Jones, R.B. Irwin, M.J. Kim, A.L.P. Rotondaro, C.F. Machala, D.T. Grider, in Symp. on VLSI Techn. Dig. (The IEEE, New York, 2004) p. 48

  8. C. Isheden, P.-E. Hellström, H.H. Radamson, S.-L. Zhang, M. Östling Electrochem. Solid-St. Lett. 7, G53 (2004)

    Article  CAS  Google Scholar 

  9. M. Bargallo Gonzalez, G. Eneman, P. Verheyen, C. Claeys, A. Benedetti, H. Bender, K. De Meyer, R. Schreutelkamp, L. Washington, F. Nouri, E. Simoen, in ECS Trans. 3(7) (The Electrochem. Soc., Pennington, 2006) p. 655

  10. G. Eneman, E. Simoen, R. Delhougne, P. Verheyen, R. Loo, K. De Meyer Appl. Phys. Lett. 87, 192112 (2005)

    Article  Google Scholar 

  11. G. Eneman, E. Simoen, R. Delhougne, P. Verheyen, V. Simons, R. Loo, M. Caymax, C. Claeys, W. Vandervorst, K. De Meyer J. Electrochem. Soc. 153, G379 (2006)

    Article  CAS  Google Scholar 

  12. R. Loo, M. Caymax, P. Meunier-Beillard, I. Peytier, F. Holsteyns, S. Kubicek, P. Verheyen, R. Lindsay, O. Richard Appl. Surf. Sci. 224, 63 (2004)

    Article  CAS  Google Scholar 

  13. L.M. Giovane, H.-C. Luan, A.M. Agarwal, L.C. Kimerling Appl. Phys. Lett. 78, 541 (2001)

    Article  CAS  Google Scholar 

  14. G. Eneman, E. Simoen, R. Delhougne, E. Gaubas, V. Simons, P. Roussel, P. Verheyen, A. Lauwers, R. Loo, W. Vandervorst, K. De Meyer, C. Claeys J. Phys. Condens. Matter. 17, S2197 (2005)

    Article  CAS  Google Scholar 

  15. M. Willander, G.-D. Shen, D.-X. Xu, W.-X. Ni J. Appl. Phys. 63, 5036 (1988)

    Article  CAS  Google Scholar 

  16. K. Kamjoo, D.K. Nayak, J.S. Park, J.C.S. Woo, K.L. Wang J. Appl. Phys. 69, 6674 (1991)

    Article  CAS  Google Scholar 

  17. J. Liu, M.C. Öztürk, Appl. Phys Lett. 87, 252119 (2005)

    Article  Google Scholar 

  18. F.M. Ross, R. Hull, D. Bahnck, J.C. Bean, L.J. Peticolas, R.A. Hamm, H.A. Huggins, J. Vac. Sci. Technol. B10, 2008 (1992)

    Google Scholar 

  19. J.G. Fiorenza, G. Braithwaite, C.W. Leitz, M.T. Currie, J. Yap, F. Singaporewala, V.K. Yang, T.A. Langdo, J. Carlin, M. Somerville, A. Lochtefeld, H. Badawi, M.T. Bulsara, Semicond. Sci. Technol. 19, L4 (2004)

    Article  CAS  Google Scholar 

  20. R. Hull, J.C. Bean, J.M. Bonar, G.S. Higashi, K.T. Short, H. Temkin, A.E. White Appl. Phys. Lett. 56, 2445 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M. Bargallo Gonzalez is indebted to the Catalan Government for granting her a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Roger Simoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoen, E.R., Bargallo Gonzalez, M., Eneman, G. et al. Germanium content dependence of the leakage current of recessed SiGe source/drain junctions. J Mater Sci: Mater Electron 18, 787–791 (2007). https://doi.org/10.1007/s10854-006-9102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9102-7

Keywords

Navigation