Optical characterization of ZnO thin films deposited by Sol-gel method

  • Byeong Kyun Choi
  • Dong Hoon Chang
  • Yung Sup Yoon
  • Seong Jun Kang


In this paper, ZnO thin film is deposited on Pt/TiO2/SiO2/Si substrate using the sol-gel method and the effect of annealing temperature on the structural morphology and optical properties of ZnO thin films is investigated. The ZnO thin films are crystallized by the heat treatment at over 400°C. The ZnO thin film annealed at 600°C exhibits the greatest c-axis orientation and the Full-Width-Half-Maximum (FWHM) of X-ray peak is 0.4360°. A dense ZnO thin film is deposited by the growth of uniform grains with the increase of annealing temperature but when the annealing temperature increases to 700°C, the surface morphology of ZnO thin film becomes worse by the aggregation of ZnO particles. In the results of surface morphology of ZnO thin film using atomic force microscope (AFM), the surface roughness of ZnO thin film annealed at 600°C is smallest, that is, approximately 1.048 nm. For the PL characteristics of ZnO thin film, it is observed that ZnO thin film annealed at 600°C exhibits the greatest UV (ultraviolet) exciton emission at approximately 378 nm, and the smallest visible emission at approximately 510 nm among ZnO thin films annealed at various temperatures. It is deduced that ZnO thin film annealed at 600°C is formed most stoichiometrically, since the visible emission at approximately 510 nm comes from either oxygen vacancies or impurities.


Monoethanolamine Green Luminescence Pulse Laser Deposition Method Zinc Acetate Dehydrate Film Bulk Acoustic Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Inha University Research Grant.


  1. 1.
    J.B. Webb, D.F. Williams, M. Buchanan, Appl. Phys. Lett. 39(8), 640–642 (1981)CrossRefGoogle Scholar
  2. 2.
    Z.C. Jin, I. Hamberg, C.G. Granqvist, B.E. Sernelius, K.F. Berggren, Thin Solid Films 164, 381–386 (1998)CrossRefGoogle Scholar
  3. 3.
    S.J. Kang, J.Y. Choi, D.H. Chang, Y.S. Yoon, J. Kor, Phys. Soc. 47(93), S589–S594 (2005)Google Scholar
  4. 4.
    J.A. Aranovich, D. Golmayo, A.L. Fechrenbruch, R.H. Bube, J. Appl. Phys. 51 460–468 (1980)CrossRefGoogle Scholar
  5. 5.
    T.E. Park, D.C. Kim, B.H. Kong, H.K. Cho, J. Kor. Phys. Soc. 45 S697–S700 (2004)Google Scholar
  6. 6.
    K.S. Hwang, Y.S. Jeon, B.A. Kang, K. Nishio, T. Tsuchiya, J.H. An, B.H. Kim, J. Kor. Phys. Soc. 46(2), 521–526 (2005)Google Scholar
  7. 7.
    Z.F. Liu, F.K. Shan, J.Y. Sohn, B.C. Shin, Y.S. Yu, S.C. Kim, Y.X. Li, J. Kor. Phys. Soc. 44(5), 1123–1127 (2004)Google Scholar
  8. 8.
    K.L. Narasimhan, S.P. Pai, V.R. Palkar, R. Pinto, Thin Solid Films 295, 104–106 (1997)CrossRefGoogle Scholar
  9. 9.
    I.H. Choi, J. Kor. Phys. Soc. 47(4), 696–699 (2005)Google Scholar
  10. 10.
    B.D. Cullity, The Elements of X-ray Diffraction, 2nd edn. Addison-Wesley, Reading, MA, (1978)Google Scholar
  11. 11.
    M. Ohyama, H. Kozuka, T. Yoko, S. Sakka, J. Ceram. Soc. Jpn. 104(4), 296–300 (1996)Google Scholar
  12. 12.
    S.A. Studeninkin, N. Golego, M. Cocivera, J. Appl. Phys. 84(4), 2287–2294 (1998)CrossRefGoogle Scholar
  13. 13.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68(3), 403–405 (1996)CrossRefGoogle Scholar
  14. 14.
    D.C. Reynolds, D.C. Look, B. Jogai, J.E Van Nostrand, R. Jones, J. Jenny, Solid State Commun 106(10), 701–704 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Byeong Kyun Choi
    • 1
  • Dong Hoon Chang
    • 1
  • Yung Sup Yoon
    • 1
  • Seong Jun Kang
    • 2
  1. 1.Department of Electronics EngineeringInha UniversityInchonKorea
  2. 2.Department of Semiconductor Materials & Devices EngineeringChonnam National UniversityYosuKorea

Personalised recommendations