Skip to main content
Log in

Structural and electrical properties of RuO2 thin films prepared by rf-magnetron sputtering and annealing at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conductive ruthenium oxide (RuO2) thin films have been deposited at different substrate temperatures on various substrates by radio-frequency (rf) magnetron sputtering and were later annealed at different temperatures. The thickness of the films ranges from 50 to 700 nm. Films deposited at higher temperatures show larger grain size (about 140 nm) with (200) preferred orientation. Films deposited at lower substrate temperature have smaller grains (about 55 nm) with (110) preferred orientation. The electrical resistivity decreases slightly with increasing film thickness but is more influenced by the deposition and annealing temperature. Maximum resistivity is 861 μΩ cm, observed for films deposited at room temperature on glass substrates. Minimum resistivity is 40 μΩ cm observed for a thin film (50 nm) deposited at 540°C on a quartz substrate. Micro-Raman investigations indicate that strain-free well-crystallized thin films are deposited on oxidized Si substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.R. Fox, S. Trolier-Mckinstry, S.B. Krupanidhi, J. Mater. Res. 10, 1508 (1995)

    CAS  Google Scholar 

  2. T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi, Y. Miyasaka, Appl. Phys. Lett. 57, 2431 (1990)

    Article  CAS  Google Scholar 

  3. Joint Committee on Diffraction Standard (JCPDS)-International Center for Diffraction Data (ICDD), Powder Diffraction File, #40-1290

  4. Y.T. Kim, C.W. Lee, S.K. Kwak, Appl. Phys. Lett. 67, 807 (1995)

    Article  CAS  Google Scholar 

  5. K. Sakiyama, S. Onishi, K. Ishihara, K. Orita, J. Electrochem. Soc. 140, 834 (1993)

    Article  CAS  Google Scholar 

  6. E. Kolawa, Thin Solid Films 173, 217 (1989)

    Article  CAS  Google Scholar 

  7. L. Krusin-Elbaum, M. Wittmer, D.S. Yee, Appl. Phys. Lett. 50, 1879 (1987)

    Article  CAS  Google Scholar 

  8. T. Kawahara, M. Yamamuka, A. Yuuki, K. Ono, Jpn. J. Appl. Phys. 35, 4880 (1996)

    Article  CAS  Google Scholar 

  9. D.P. Vijay, S.B. Desu, J. Electrochem. Soc. 140, 2640 (1993)

    Article  CAS  Google Scholar 

  10. M. Wittmer, J. Vac. Sci. Technol. A2, 273 (1984)

    Google Scholar 

  11. L. Krusin-Elbaum, M. Wittmer, J. Electrochem. Soc. 135, 2610 (1988)

    Article  CAS  Google Scholar 

  12. E. Kolawa, F.C.T. So, E.T.-S. Pan, M.-A. Nicolet, Appl. Phys. Lett. 50, 854 (1987)

    Article  CAS  Google Scholar 

  13. K.M. Glassford, J.R. Chelikowsky, Phys. Rev. B 47, 1732 (1993)

    Article  CAS  Google Scholar 

  14. W.D. Ryden, A.W. Lawson, C.C. Sartain, Phys. Rev. B 1, 1494 (1970)

    Article  Google Scholar 

  15. L.A. Burstill, I.M. Reaney, D.P. Vijay, S.B. Desu, J. Appl. Phys. 75, 1521 (1994)

    Article  Google Scholar 

  16. Q.X. Jia, S.G. Song, X.D. Wu, J.H. Cho, S.R. Foltyn, A.T. Findikoglu, J.L. Smith, Appl. Phys. Lett. 68, 1069 (1996)

    Article  CAS  Google Scholar 

  17. H.N. Al-Shareef, K.R. Bellur, O. Auciello, A.I. Kingon, Thin Solid Films 256, 73 (1995)

    Article  CAS  Google Scholar 

  18. W.C. Shin, S.G. Yoon, J. Electrochem. Soc. 144, 1055 (1997)

    Article  CAS  Google Scholar 

  19. J.G. Lee, Y.T. Kim, S.K. Min, J. Appl. Phys. 77, 5473 (1995)

    Article  CAS  Google Scholar 

  20. W.T. Lim, K.R. Cho, C.H. Lee, Thin Solid Films 348, 56 (1999)

    Article  CAS  Google Scholar 

  21. J. Malek, A. Watanabe, T. Mitsuhashi, Thermochim. Acta 282/283, 131 (1996)

    Article  Google Scholar 

  22. Q.X. Jia, X.D. Wu, S.R. Foltyn, A.T. Findikoglu, P. Tiwari, J.P. Zheng, T.R. Jow, Appl. Phys. Lett. 67, 1677 (1995)

    Article  CAS  Google Scholar 

  23. H. Maiwa, N. Ichinose, K. Okazaki, Jpn. J. Appl. Phys. 33, 5223 (1994)

    Article  CAS  Google Scholar 

  24. H. Luan, C.-H. Lee, D.-L. Kwong, Appl. Phys. Lett. 78, 1134 (2001)

    Article  Google Scholar 

  25. H. Zhong, G. Heuss, V. Misra, IEEE Electron. Device Lett. 21, 593 (2000)

    Article  CAS  Google Scholar 

  26. Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, Jpn. J. Appl. Phys. 37, 3457 (1998)

    Article  CAS  Google Scholar 

  27. J.S. Lee, H.J. Kwon, Y.W. Jeong, H.H. Kim, C.Y. Kim, J. Mater. Res. 11, 2681 (1997)

    Google Scholar 

  28. T.S. Kalkur, Y.C. Lu, Thin Solid Films 205, 266 (1991)

    Article  CAS  Google Scholar 

  29. S. Bhaskar, P.S. Dobal, S.B. Majumder, R.S. Katiyar, J. Appl. Phys. 89, 2987 (2001)

    Article  CAS  Google Scholar 

  30. P.C. Liao, S.Y. Mar, W.S. Ho, Y.S. Huang, K.K. Tiong, Thin Solid Films 287, 74 (1996)

    Article  CAS  Google Scholar 

  31. S. Nakashima, M. Hangyo, IEEE J. Quantum Electron. QE-25, 965 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. S. Reuter and Mr. D. Dahlhaus for having performed Raman spectroscopy and AFM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Vayunandana Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayunandana Reddy, Y.K., Mergel, D. Structural and electrical properties of RuO2 thin films prepared by rf-magnetron sputtering and annealing at different temperatures. J Mater Sci: Mater Electron 17, 1029–1034 (2006). https://doi.org/10.1007/s10854-006-9032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9032-4

Keywords

Navigation