Structural and electrical properties of RuO2 thin films prepared by rf-magnetron sputtering and annealing at different temperatures



Conductive ruthenium oxide (RuO2) thin films have been deposited at different substrate temperatures on various substrates by radio-frequency (rf) magnetron sputtering and were later annealed at different temperatures. The thickness of the films ranges from 50 to 700 nm. Films deposited at higher temperatures show larger grain size (about 140 nm) with (200) preferred orientation. Films deposited at lower substrate temperature have smaller grains (about 55 nm) with (110) preferred orientation. The electrical resistivity decreases slightly with increasing film thickness but is more influenced by the deposition and annealing temperature. Maximum resistivity is 861 μΩ cm, observed for films deposited at room temperature on glass substrates. Minimum resistivity is 40 μΩ cm observed for a thin film (50 nm) deposited at 540°C on a quartz substrate. Micro-Raman investigations indicate that strain-free well-crystallized thin films are deposited on oxidized Si substrates.


Substrate Temperature RuO2 Quartz Substrate Very Large Scale Integrate Dynamic Random Access Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Mr. S. Reuter and Mr. D. Dahlhaus for having performed Raman spectroscopy and AFM measurements, respectively.


  1. 1.
    G.R. Fox, S. Trolier-Mckinstry, S.B. Krupanidhi, J. Mater. Res. 10, 1508 (1995)Google Scholar
  2. 2.
    T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi, Y. Miyasaka, Appl. Phys. Lett. 57, 2431 (1990)CrossRefGoogle Scholar
  3. 3.
    Joint Committee on Diffraction Standard (JCPDS)-International Center for Diffraction Data (ICDD), Powder Diffraction File, #40-1290Google Scholar
  4. 4.
    Y.T. Kim, C.W. Lee, S.K. Kwak, Appl. Phys. Lett. 67, 807 (1995)CrossRefGoogle Scholar
  5. 5.
    K. Sakiyama, S. Onishi, K. Ishihara, K. Orita, J. Electrochem. Soc. 140, 834 (1993)CrossRefGoogle Scholar
  6. 6.
    E. Kolawa, Thin Solid Films 173, 217 (1989)CrossRefGoogle Scholar
  7. 7.
    L. Krusin-Elbaum, M. Wittmer, D.S. Yee, Appl. Phys. Lett. 50, 1879 (1987)CrossRefGoogle Scholar
  8. 8.
    T. Kawahara, M. Yamamuka, A. Yuuki, K. Ono, Jpn. J. Appl. Phys. 35, 4880 (1996)CrossRefGoogle Scholar
  9. 9.
    D.P. Vijay, S.B. Desu, J. Electrochem. Soc. 140, 2640 (1993)CrossRefGoogle Scholar
  10. 10.
    M. Wittmer, J. Vac. Sci. Technol. A2, 273 (1984)Google Scholar
  11. 11.
    L. Krusin-Elbaum, M. Wittmer, J. Electrochem. Soc. 135, 2610 (1988)CrossRefGoogle Scholar
  12. 12.
    E. Kolawa, F.C.T. So, E.T.-S. Pan, M.-A. Nicolet, Appl. Phys. Lett. 50, 854 (1987)CrossRefGoogle Scholar
  13. 13.
    K.M. Glassford, J.R. Chelikowsky, Phys. Rev. B 47, 1732 (1993)CrossRefGoogle Scholar
  14. 14.
    W.D. Ryden, A.W. Lawson, C.C. Sartain, Phys. Rev. B 1, 1494 (1970)CrossRefGoogle Scholar
  15. 15.
    L.A. Burstill, I.M. Reaney, D.P. Vijay, S.B. Desu, J. Appl. Phys. 75, 1521 (1994)CrossRefGoogle Scholar
  16. 16.
    Q.X. Jia, S.G. Song, X.D. Wu, J.H. Cho, S.R. Foltyn, A.T. Findikoglu, J.L. Smith, Appl. Phys. Lett. 68, 1069 (1996)CrossRefGoogle Scholar
  17. 17.
    H.N. Al-Shareef, K.R. Bellur, O. Auciello, A.I. Kingon, Thin Solid Films 256, 73 (1995)CrossRefGoogle Scholar
  18. 18.
    W.C. Shin, S.G. Yoon, J. Electrochem. Soc. 144, 1055 (1997)CrossRefGoogle Scholar
  19. 19.
    J.G. Lee, Y.T. Kim, S.K. Min, J. Appl. Phys. 77, 5473 (1995)CrossRefGoogle Scholar
  20. 20.
    W.T. Lim, K.R. Cho, C.H. Lee, Thin Solid Films 348, 56 (1999)CrossRefGoogle Scholar
  21. 21.
    J. Malek, A. Watanabe, T. Mitsuhashi, Thermochim. Acta 282/283, 131 (1996)CrossRefGoogle Scholar
  22. 22.
    Q.X. Jia, X.D. Wu, S.R. Foltyn, A.T. Findikoglu, P. Tiwari, J.P. Zheng, T.R. Jow, Appl. Phys. Lett. 67, 1677 (1995)CrossRefGoogle Scholar
  23. 23.
    H. Maiwa, N. Ichinose, K. Okazaki, Jpn. J. Appl. Phys. 33, 5223 (1994)CrossRefGoogle Scholar
  24. 24.
    H. Luan, C.-H. Lee, D.-L. Kwong, Appl. Phys. Lett. 78, 1134 (2001)CrossRefGoogle Scholar
  25. 25.
    H. Zhong, G. Heuss, V. Misra, IEEE Electron. Device Lett. 21, 593 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, Jpn. J. Appl. Phys. 37, 3457 (1998)CrossRefGoogle Scholar
  27. 27.
    J.S. Lee, H.J. Kwon, Y.W. Jeong, H.H. Kim, C.Y. Kim, J. Mater. Res. 11, 2681 (1997)Google Scholar
  28. 28.
    T.S. Kalkur, Y.C. Lu, Thin Solid Films 205, 266 (1991)CrossRefGoogle Scholar
  29. 29.
    S. Bhaskar, P.S. Dobal, S.B. Majumder, R.S. Katiyar, J. Appl. Phys. 89, 2987 (2001)CrossRefGoogle Scholar
  30. 30.
    P.C. Liao, S.Y. Mar, W.S. Ho, Y.S. Huang, K.K. Tiong, Thin Solid Films 287, 74 (1996)CrossRefGoogle Scholar
  31. 31.
    S. Nakashima, M. Hangyo, IEEE J. Quantum Electron. QE-25, 965 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Physics Department, Thin Film Technology GroupUniversity of Duisburg-EssenEssenGermany

Personalised recommendations