Planar defects and phase transformation in ZnSe nanosaws

  • Y. Q. Wang
  • U. Philipose
  • H. Ruda
  • K. L. Kavanagh


ZnSe nanostructures were grown on Si substrates by Au catalyzed vapor phase growth at 725°C. Three different types of ZnSe nanosaws have been observed using transmission electron microscopy (TEM). Detailed structural and microstructural investigation has been carried out using electron diffraction and high-resolution TEM (HRTEM). It has been found that stacking faults and phase transformation are important features of the nanosaw formation. The controlled formation of these ZnSe nanosaws could have very important device applications.


High Resolution Transmission Electron Microscopy ZnSe High Resolution Transmission Electron Microscopy Planar Defect High Resolution Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from CIPI, NSERC, CFI, BCKDF, CITO, MMO, DRDC and AFOSR in carrying out this research.


  1. 1.
    S.K. Hong, E. Kurts, J.H. Chang, T. Hanada, M. Oku, T. Yao, Appl. Phys. Lett. 78, 165 (2001)CrossRefGoogle Scholar
  2. 2.
    M.A. Haase, J. Qiu, J.M. Depuydt, H. Cheng, Appl. Phys. Lett. 59, 1272 (1991)CrossRefGoogle Scholar
  3. 3.
    M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nano Lett. 2, 87 (2002)CrossRefGoogle Scholar
  4. 4.
    M.S. Gudiksen, L.J. Lauhon, J.F. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Wu, R. Fan, P.D. Yang, Nano Lett. 2, 83 (2002)CrossRefGoogle Scholar
  6. 6.
    C.M. Lieber, Nano Lett. 2, 81 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Ma, D. Moore, Y. Ding, J. Li, Z.L. Wang, Int. J. Nanotechnol. 1, 431 (2004)CrossRefGoogle Scholar
  8. 8.
    Y. Ding, C. Ma, Z.L. Wang, Adv. Mater. 16, 1740 (2004)CrossRefGoogle Scholar
  9. 9.
    Z.L. Wang, X.Y. Kong, J.M. Zuo, Phys. Rev. Lett. 91, 185502 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Ma, Y. Ding, D. Moore, X.D. Wang, Z.L. Wang, J. Am. Chem. Soc. 126, 708 (2004)CrossRefGoogle Scholar
  11. 11.
    C. Ma, D. Moore, J. Li, Z.L. Wang, Adv. Mater. 15, 228 (2003)CrossRefGoogle Scholar
  12. 12.
    X.T. Zhang, K.M. Ip, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 84, 2641 (2004)CrossRefGoogle Scholar
  13. 13.
    Q. Li, X.G. Gong, C.R. Wang, J. Wang, K.M. Ip, S.K. Hark, Adv. Mater. 16, 1436 (2004)CrossRefGoogle Scholar
  14. 14.
    X.T. Zhang, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 83, 5533 (2003)CrossRefGoogle Scholar
  15. 15.
    Y. Jiang, X.M. Meng, W.C. Yiu, J. Liu, J.X. Ding, C.S. Lee, S.T. Lee, J. Phys. Chem. B 108, 2784 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Wang, R. Smirani, G.G. Ross, Appl. Phys. Lett. 86, 221920 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Y. Q. Wang
    • 1
  • U. Philipose
    • 2
  • H. Ruda
    • 2
  • K. L. Kavanagh
    • 1
  1. 1.Department of PhysicsSimon Fraser UniversityBurnabyCanada
  2. 2.Center for Advanced NanotechnologyUniversity of TorontoTorontoCanada

Personalised recommendations