Studying electrical transport in carbon nanotubes by conductance atomic force microscopy

  • C. Gómez-Navarro
  • P. J. de Pablo
  • J. Gómez-Herrero


An introduction to conductance atomic force microscopy in the context of carbon nanotubes is provided where the main problems and performances of this technique are discussed. The conductance measured in SWNT as a function of the loading force applied by an AFM metallized tip is reported. These experiments allow us to study the process of the electrical contact formation between the tip and the nanotube. This will also lead to a study of the electromechanical properties of nanotubes for radial deformations.


Microscopy Atomic Force Microscopy Carbon Nanotubes Electronic Material Electrical Contact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S., Helical Microtubules of Graphitic Carbon, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)CrossRefGoogle Scholar
  3. 3.
    Dresselhaus, M.S., Dresselhauss, G., Eklund, P.C. Science of fullerenes and carbon nanotubes (Academic Press, London, 1996)Google Scholar
  4. 4.
    Tombler, T.W., et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)CrossRefGoogle Scholar
  5. 5.
    Yao, Z., Postma, H.W.C., Balents, L. Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)CrossRefGoogle Scholar
  6. 6.
    Pendry, J.B., Symmetry and Transport of Waves in One-Dimensional Disordered-Systems. Adv. Phys. 43, 461–542 (1994)CrossRefGoogle Scholar
  7. 7.
    Binnig, G., Quate, C.F., Gerber, C., Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  8. 8.
    Dai, H.J., Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes (vol 272, pg 523, 1996). Science 272, 1861 (1996)Google Scholar
  9. 9.
    Salmeron, M. et al. Tip-Surface Forces During Imaging by Scanning Tunneling Microscopy. J. Vac. Sci. Technol. B 9, 1347–1352 (1991)CrossRefGoogle Scholar
  10. 10.
    Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B., Fractured Polymer Silica Fiber Surface Studied by Tapping Mode Atomic-Force Microscopy. Surf. Sci. 290, L688 (1993)CrossRefGoogle Scholar
  11. 11.
    Hansma, P.K. et al. Tapping Mode Atomic-Force Microscopy in Liquids. Appl. Phys. Lett. 64, 1738–1740 (1994)CrossRefGoogle Scholar
  12. 12.
    de Pablo, P.J., Colchero, J., Luna, M., Gomez, J.-Herrero, Baro, A.M., Tip-sample interaction in tapping-mode scanning force microscopy. Phys. Rev. B 61, 14179–14183 (2000)CrossRefGoogle Scholar
  13. 13.
    de Pablo, P.J., Colchero, J., Gomez, J.-Herrero, Baro, A.M., Jumping mode scanning force microscopy. Appl. Phys. Lett. 73, 3300–3302 (1998)CrossRefGoogle Scholar
  14. 14.
    de Pablo, P.J. et al. Mechanical and electrical properties of nanosized contacts on single-walled carbon nanotubes. Adv Mater 12, 573–576 (2000)CrossRefGoogle Scholar
  15. 15.
    Johnson, K.L., Contact mechanics (Cambridge University Press, Cambridge, 1985)Google Scholar
  16. 16.
    Gomez, C.-Navarro, de Pablo, P.J., Gomez, J.-Herrero, Radial electromechanical properties of carbon nanotubes. Adv. Mater. 16, 549–552 (2004)CrossRefGoogle Scholar
  17. 17.
    Yao, Z., Kane, C.L., Dekker, C., High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)CrossRefGoogle Scholar
  18. 18.
    Park, J.Y., et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano. Lett. 4, 517–520 (2004)CrossRefGoogle Scholar
  19. 19.
    Simmons, J.G., Generalized Formula for Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 34, 1793 & (1963)CrossRefGoogle Scholar
  20. 20.
    Minot, E.D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, (2003) 156401CrossRefGoogle Scholar
  21. 21.
    Gomez-Navarro, C., Saenz, J.J., Gomez-herrero, J., Phys. Rev. Lett. 96, 076803 (2006)CrossRefGoogle Scholar
  22. 22.
    de Pablo, P.J. et al. Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 36804–36808 (2002)CrossRefGoogle Scholar
  23. 23.
    Gomez-Navarro, C. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 4, 534–539 (2005)CrossRefGoogle Scholar
  24. 24.
    Krasheninnikov, A.V., Nordlund, K., Sirvio, M., Salonen, E., Keinonen, J., Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001)CrossRefGoogle Scholar
  25. 25.
    Krasheninnikov, A.V., Nordlund, K., Irradiation effects in carbon nanotubes. Nucl Instrum Meth B 216, 355-366 (2004)CrossRefGoogle Scholar
  26. 26.
    Gornyi, I.V., Mirlin, A.D., Polyakov, D.G., Dephasing and weak localization in disordered Luttinger liquid. Phys. Rev. Lett. 95, (2005)Google Scholar
  27. 27.
    Man, H.T., Morpurgo, A.F., Sample-specific and ensemble-averaged magnetoconductance of individual single-wall carbon nanotubes. Phys. Rev. Lett. 95, (2005)Google Scholar
  28. 28.
    Cumings, J., Zettl, A., Localization and nonlinear resistance in telescopically extended nanotubes. Phys Rev Lett 93, (2004)Google Scholar
  29. 29.
    Biel, B., Garcia-Vidal, F.J., Rubio, A., Flors, F., Phys. Rev. Lett. 95 266801 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • C. Gómez-Navarro
    • 1
  • P. J. de Pablo
    • 1
  • J. Gómez-Herrero
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations