Skip to main content
Log in

Studying electrical transport in carbon nanotubes by conductance atomic force microscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An introduction to conductance atomic force microscopy in the context of carbon nanotubes is provided where the main problems and performances of this technique are discussed. The conductance measured in SWNT as a function of the loading force applied by an AFM metallized tip is reported. These experiments allow us to study the process of the electrical contact formation between the tip and the nanotube. This will also lead to a study of the electromechanical properties of nanotubes for radial deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    Article  CAS  Google Scholar 

  3. Dresselhaus, M.S., Dresselhauss, G., Eklund, P.C. Science of fullerenes and carbon nanotubes (Academic Press, London, 1996)

    Google Scholar 

  4. Tombler, T.W., et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  CAS  Google Scholar 

  5. Yao, Z., Postma, H.W.C., Balents, L. Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    Article  CAS  Google Scholar 

  6. Pendry, J.B., Symmetry and Transport of Waves in One-Dimensional Disordered-Systems. Adv. Phys. 43, 461–542 (1994)

    Article  Google Scholar 

  7. Binnig, G., Quate, C.F., Gerber, C., Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  8. Dai, H.J., Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes (vol 272, pg 523, 1996). Science 272, 1861 (1996)

    Google Scholar 

  9. Salmeron, M. et al. Tip-Surface Forces During Imaging by Scanning Tunneling Microscopy. J. Vac. Sci. Technol. B 9, 1347–1352 (1991)

    Article  CAS  Google Scholar 

  10. Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B., Fractured Polymer Silica Fiber Surface Studied by Tapping Mode Atomic-Force Microscopy. Surf. Sci. 290, L688 (1993)

    Article  CAS  Google Scholar 

  11. Hansma, P.K. et al. Tapping Mode Atomic-Force Microscopy in Liquids. Appl. Phys. Lett. 64, 1738–1740 (1994)

    Article  CAS  Google Scholar 

  12. de Pablo, P.J., Colchero, J., Luna, M., Gomez, J.-Herrero, Baro, A.M., Tip-sample interaction in tapping-mode scanning force microscopy. Phys. Rev. B 61, 14179–14183 (2000)

    Article  Google Scholar 

  13. de Pablo, P.J., Colchero, J., Gomez, J.-Herrero, Baro, A.M., Jumping mode scanning force microscopy. Appl. Phys. Lett. 73, 3300–3302 (1998)

    Article  Google Scholar 

  14. de Pablo, P.J. et al. Mechanical and electrical properties of nanosized contacts on single-walled carbon nanotubes. Adv Mater 12, 573–576 (2000)

    Article  Google Scholar 

  15. Johnson, K.L., Contact mechanics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  16. Gomez, C.-Navarro, de Pablo, P.J., Gomez, J.-Herrero, Radial electromechanical properties of carbon nanotubes. Adv. Mater. 16, 549–552 (2004)

    Article  Google Scholar 

  17. Yao, Z., Kane, C.L., Dekker, C., High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)

    Article  CAS  Google Scholar 

  18. Park, J.Y., et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano. Lett. 4, 517–520 (2004)

    Article  CAS  Google Scholar 

  19. Simmons, J.G., Generalized Formula for Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 34, 1793 & (1963)

    Article  Google Scholar 

  20. Minot, E.D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, (2003) 156401

    Article  CAS  Google Scholar 

  21. Gomez-Navarro, C., Saenz, J.J., Gomez-herrero, J., Phys. Rev. Lett. 96, 076803 (2006)

    Article  CAS  Google Scholar 

  22. de Pablo, P.J. et al. Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 36804–36808 (2002)

    Article  Google Scholar 

  23. Gomez-Navarro, C. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 4, 534–539 (2005)

    Article  CAS  Google Scholar 

  24. Krasheninnikov, A.V., Nordlund, K., Sirvio, M., Salonen, E., Keinonen, J., Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001)

    Article  Google Scholar 

  25. Krasheninnikov, A.V., Nordlund, K., Irradiation effects in carbon nanotubes. Nucl Instrum Meth B 216, 355-366 (2004)

    Article  CAS  Google Scholar 

  26. Gornyi, I.V., Mirlin, A.D., Polyakov, D.G., Dephasing and weak localization in disordered Luttinger liquid. Phys. Rev. Lett. 95, (2005)

  27. Man, H.T., Morpurgo, A.F., Sample-specific and ensemble-averaged magnetoconductance of individual single-wall carbon nanotubes. Phys. Rev. Lett. 95, (2005)

  28. Cumings, J., Zettl, A., Localization and nonlinear resistance in telescopically extended nanotubes. Phys Rev Lett 93, (2004)

  29. Biel, B., Garcia-Vidal, F.J., Rubio, A., Flors, F., Phys. Rev. Lett. 95 266801 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gómez-Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Navarro, C., de Pablo, P.J. & Gómez-Herrero, J. Studying electrical transport in carbon nanotubes by conductance atomic force microscopy. J Mater Sci: Mater Electron 17, 475–482 (2006). https://doi.org/10.1007/s10854-006-8094-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-8094-7

Keywords

Navigation