Submicron size Li(Ni1/3Co1/3Mn1/3)O2 particles prepared by spray pyrolysis from polymeric precursor solution

  • S. H. Ju
  • H. Y. Koo
  • D. Y. Kim
  • S. K. Hong
  • Y. C. Kang
  • H. W. Ha
  • K. Kim


Submicron-sized Li(Ni1/3Co1/3Mn1/3)O2 particles were prepared by spray pyrolysis. A polymeric precursor solution containing citric acid and ethylene glycol enabled the formation of submicron-sized Li(Ni1/3Co1/3Mn1/3)O2 spherical particles with narrow-sized distribution and non-aggregation characteristics in the spray pyrolysis. The mean sizes of the particles post-treated at temperatures of 800 and 900C were 380 and 770 nm. On the other hand, the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained from the aqueous solution had irregular morphology and broad-sized distribution. The discharge capacity of the particles prepared from polymeric precursor solution decreased from 88 mAh/g to 135 mAh/g after 50 cycles. The particles prepared from polymeric precursor solution had high discharge capacity and good cyclic properties than those of the particles prepared from the aqueous solution.


Ethylene Aqueous Solution Ethylene Glycol Pyrolysis Citric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsuda, K., Taniguchi, I., Power Sources 132, 156 (2004)CrossRefGoogle Scholar
  2. 2.
    Taniguchi, I., Mater. Chem. Phys. 92, 172 (2005)CrossRefGoogle Scholar
  3. 3.
    Sun, Y. K., Kim, D. W., Choi, Y. M., J. Power Sources 79, 231 (1999)CrossRefGoogle Scholar
  4. 4.
    Bakenov, Z., Taniguchi, I., Solid State Ionics 176, 1027 (2005)CrossRefGoogle Scholar
  5. 5.
    Park, S. H., Yoon, C. S., Kang, S. G., Kim, H. S., Moon, S. I., Sun, Y. K., Electrochem. Acta 49, 557 (2004)CrossRefGoogle Scholar
  6. 6.
    Taniguchi, I., Song, D., Wakihara, M., J. Power Sources 109, 333 (2002)CrossRefGoogle Scholar
  7. 7.
    Taniguchi, I., Lim, C. K., Song, D., Wakihara, M., Solid State Ionics 146, 239 (2002)CrossRefGoogle Scholar
  8. 8.
    Park, S. H., Sun, Y. K., Electrochem. Acta 50, 431 (2004)Google Scholar
  9. 9.
    Oh, S. W., Park, S. H., Park, C. W., Sun, Y. K., Solid State Ionics 171, 167 (2004)CrossRefGoogle Scholar
  10. 10.
    Matsuda, K., Taniguchi, I., J. Power Sources 132, 156 (2004)CrossRefGoogle Scholar
  11. 11.
    Song, M. Y., Lee R., Kwon, I. H., Solid State Ionics 156, 319 (2003)CrossRefGoogle Scholar
  12. 12.
    Chang, C. C., Kumta, P. N., Mater. Sci. Eng. B 116, 341 (2005)CrossRefGoogle Scholar
  13. 13.
    Machida, N., Maeda, H., Peng, H., Shigematsu, T., J. Electrochem. Soc. 149, (6) A688 (2002)CrossRefGoogle Scholar
  14. 14.
    Jeon, Y. A., No, K. S., Yoon, Y. S., J. Electrochem. Soc. 151, (11) A1870 (2004)CrossRefGoogle Scholar
  15. 15.
    Myung, S. T., Komaba, S. Kumagai, N., J. Electrochem. Soc. 149, (10) A1349 (2002)CrossRefGoogle Scholar
  16. 16.
    Yabuuchi, N., Ohzuku, T., J. Power Sources 119–121 171 (2003)CrossRefGoogle Scholar
  17. 17.
    Patoux, S., Doeff, M. M., Electrochem. Comm. 6, 767 (2004)CrossRefGoogle Scholar
  18. 18.
    Li, D. C., Muta, T., Hang, L. Q., Yoshio, M., Noguchi, H. J., Power Sources 132, 150 (2004)CrossRefGoogle Scholar
  19. 19.
    Sohn, J. R., Kang, Y. C., Park, H. D., Jpn. J. Appl. Phys. 41, 3006 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. H. Ju
    • 1
  • H. Y. Koo
    • 1
  • D. Y. Kim
    • 1
  • S. K. Hong
    • 1
  • Y. C. Kang
    • 1
  • H. W. Ha
    • 2
  • K. Kim
    • 2
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulKorea
  2. 2.Division of Chemistry and Molecular EngineeringKorea UniversitySeoulKorea

Personalised recommendations