Advertisement

Chemical and sol–gel processing of tellurite glasses for optoelectronics

  • S. N. B. Hodgson
  • L. Weng
Article

Abstract

Recent developments in the application of sol–gel processing technology for tellurite glass systems are reviewed and reported. The processing of telurite glasses via sol–gel entails some difficulties, mainly due to the anomalously high reactivity of Te(IV) alkoxides toward hydrolysis. Although conventional approaches to steric stabilisation of the alkoxides is not successful for these compounds, various successful approaches have been developed which allow the fabrication of transparent films from these precursors. In particular, diol complexation, chemical liberation of water from esterification processes and peptisation methods have been demonstrated. Other successful approaches involve the use of Te(VI) alkoxides and acids as precursors, with TeO2 based glasses being formed via TeO3 intermediates which liberate oxygen during heat treatment. One drawback with all these methods is the inherent thermal instability of the sol–gel derived material, which leads to both the liberation of free tellurium and devitrification of the glass on heat treatment. However this problem is less significant when Te(VI) precursors are used. The fabrication of multicomponent tellurite glasses by sol–gel approaches is very successful. Systems such as TeO2–TiO2 and TeO2–PbO–TiO2 have been successfully fabricated, and exhibit much greater resistance to devitrification allowing fully dense, transparent glasses to be produced.

Keywords

Tellurium Alkoxide TeO2 Tellurite Glass Alkoxide Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Prasad, in Ultrastructure processing of advanced materials. eds. by D. Uhlmann, D. Ulrich (John Wiley & Sons. Inc, New York, 1992) pp. 461–473Google Scholar
  2. 2.
    J. Wang, R.K. Pattnaik, J. Toulouse, Photo-Opt. Ins. 5597, 136–139 (2004)Google Scholar
  3. 3.
    S.X. Shen, A. Jha, X.B. Liu, J. Am. Ceram. Soc. 85(6), 1391 (2002)CrossRefGoogle Scholar
  4. 4.
    R.A. El-Mallawany, J. Appl. Phys. 72, 1774 (1992)CrossRefGoogle Scholar
  5. 5.
    S. Kim, T. Yoko, S. Sakka, J. Am. Ceram. Soc. 76, 2486 (1993)CrossRefGoogle Scholar
  6. 6.
    E. Ito, Y. Kawaguchi, M. Tomiyama, Jpn. J. Appl. Phys. 144(5B), 3574 (2005)CrossRefGoogle Scholar
  7. 7.
    C.N. Pannell, H.J. Gnewuch, J. Ward, Proc. SPIE Opt. Comp. Mat. 5350, 97 (2004)Google Scholar
  8. 8.
    M.N. Khan, Phys. Stat. Sol. (a), 117, 593 (1990)Google Scholar
  9. 9.
    M. Malik, C.A. Hogarth, J. Mat. Sci. Lett. 8, 655 (1989)CrossRefGoogle Scholar
  10. 10.
    R. Mishra, M.S. Samant, A.S. Kerkar, S. Dharwadkar, Thermochimica Acta. 273, 85 (1996)CrossRefGoogle Scholar
  11. 11.
    S.K.J. Alani, C.A. Int. J. Electron. 58(1), 123 (1985)Google Scholar
  12. 12.
    M.S. Malik, C.A Hogarth, J. Mater. Sci. 25(4), 1913 (1990)CrossRefGoogle Scholar
  13. 13.
    M. Imaoka, in Advances in glass technology. ed. by Am. Ceram. Soc. (Plenum Press, New York, 1962), pp. 149–164Google Scholar
  14. 14.
    M. Giulio, G. Micocci, R. Rella, A. Tepore, J. Vac. Sci. Technol. A 6(2), 243 (1988)CrossRefGoogle Scholar
  15. 15.
    R. Nayak, V. Gupta, A.L. Dawar, Thin. Solid Films 445(1), 118 (2003)CrossRefGoogle Scholar
  16. 16.
    F. D’Amore, M. Di Giulio, S.M. Pietralunga, J. Appl. Phys. 94(3), 1654 (2003)CrossRefGoogle Scholar
  17. 17.
    Alfa Aesar chemical catalogue online, http://www.alfa.com UN number UN2924Google Scholar
  18. 18.
    Von H. Meerwein, T. Bersin, Annalen der Chemie 476, 113 (1929)Google Scholar
  19. 19.
    R.C. Mehrotra, S.N. Mathur, J. Indian Chem. Soc. 42, 1 (1965)Google Scholar
  20. 20.
    A. Pierre, F. Duboudin, B. Tanguy, J. Portier, J. Non-Cryst. Solids 147&148, 569 (1992)CrossRefGoogle Scholar
  21. 21.
    M. Patry, Comptes Rendus des Seancess de L’Academie des Sciences 201, 71 (1935)Google Scholar
  22. 22.
    O. Lindqvist, Acta Chemica Scandinavia 21, 1473 (1967)CrossRefGoogle Scholar
  23. 23.
    N. Pellini, Gazz. Chim. Italiana 46, 247 (1916)Google Scholar
  24. 24.
    M. Patry, Comptes Rendus des Seancess de L’Academie des Sciences 202, 2088 (1936)Google Scholar
  25. 25.
    V. Siebert, Z. Anorg. Allg. Chemie. 301, 162- (1959)Google Scholar
  26. 26.
    J. Brinker, K. Keefer, D. Schaefer, R. Assink, B. Kay, C. Ashley, J. Non-Cryst. Solid 63, 45 (1984)CrossRefGoogle Scholar
  27. 27.
    S.N.B. Hodgson, L. Weng, J. Non-Cryst. Solids. 276, 195 (2000)CrossRefGoogle Scholar
  28. 28.
    L.Q. Weng, S.N.B. Hodgson, Mat. Sci. Eng. B 87(1), 77 (2001)CrossRefGoogle Scholar
  29. 29.
    S. Coste, A. Lecomte, P. Thomas, J.C. Chamarnaud-Mesjard, T. Merle-Mejean, R. Guinebretiare. J. Non-Cryst. Solids 345, 634 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Lecomte, F Bamiere, S. Coste, P. Thomas, J.C. Chamarnaud-Mesjard, Proc. IX Conference & Exhibition of the European Ceramic Society 19–23 June 2005 (In press)Google Scholar
  31. 31.
    J. Livage, M. Henry, in Ultrastructure processing of advanced ceramics. ed. by J.D. Mackenzie, D.R. Ulrich (John Wiley& Sons, New York, 1988), p.183Google Scholar
  32. 32.
    J. Livage, C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992)CrossRefGoogle Scholar
  33. 33.
    J. Livage, C. Sanchez, M. Henry, S. Doeuff, Solid State Ionics 3233, 633 (1989)CrossRefGoogle Scholar
  34. 34.
    F. Tian, L.Z. Pan, X.W. Wu, J. Non-Cryst. Solids 104(1), 129 (Aug 1988)CrossRefGoogle Scholar
  35. 35.
    N.N. Greenwood, A. Earnshaw, Chemistry of the elements (Pergamon Press, Oxford, 1984)Google Scholar
  36. 36.
    S. Neov, V. Kozhukharov, I. Gerasimova, B. Sidzhimov, J. Non-Cryst. Solid 126, 255 (1990)CrossRefGoogle Scholar
  37. 37.
    I.D. Brown, J. Solid State Chem. 11, 214 (1974)CrossRefGoogle Scholar
  38. 38.
    R.T. Sanderson, Chemical bonds and bond energy (Academic Press, London 1971)Google Scholar
  39. 39.
    G. Rodgers, Introduction to coordination, solid state and descriptive inorganic chemistry (McGraw-Hill Ltd., New York, 1994)Google Scholar
  40. 40.
    C.J. Brinker, G.W. Scherer, Sol–gel science—the physics and chemistry of sol–gel processing (Academic Press, Inc., U.S.A., 1990)Google Scholar
  41. 41.
    J. Livage, Mat. Res. Soc. Symp. Proc. 73, 717 (1986)Google Scholar
  42. 42.
    F. Babonneau, L. Courty, J. Livage, J. Non-Cryst. Solids 121, 153 (1990)CrossRefGoogle Scholar
  43. 43.
    S.N.B Hodgson, L. Weng, Proc XVIIIth International Congress on Glass, San Fransisco, July 1998, CD ROM- Pub American Ceramic Society ISBN 1-57498-053-X , E6Google Scholar
  44. 44.
    Y. Chen, S. Vilminot, Mat. Res. Bull. 30, 291 (1995)CrossRefGoogle Scholar
  45. 45.
    E.F. Lambson and G. Saunders, J. Non-Cryst. Solids 69, 117 (1984)CrossRefGoogle Scholar
  46. 46.
    K.M. Mackay, R.A. Mackay, W. Henderson, Introduction to modern inorganic chemistry. 5th edn. (Blackie Academic and Professional, London, 1996)Google Scholar
  47. 47.
    R. C. Mehrotra, S. N. Mathur, J. Ind. Chem. Soc. 42, 749 (1965)Google Scholar
  48. 48.
    M.A. Anderson, M.J.Gieselmann, Q. Xu, J. Membrane Sci. 39, 243 (1988)CrossRefGoogle Scholar
  49. 49.
    M. Graetzel, J. Sol–Gel Sci. Tech. 22, 7 (2001)CrossRefGoogle Scholar
  50. 50.
    L. Weng, S. Hodgson, X. Bao, K. Sagoe-Crentsil, Mat. Sci. Eng. B 107, 89 (2004)CrossRefGoogle Scholar
  51. 51.
    J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson, in Comprehensive inorganic chemistry, vol. 2. (Pergamon Press Ltd., Oxford, 1993)Google Scholar
  52. 52.
    V. Siebert, Z. Anorg. Allg. Chemie. 301, 162 (1959)Google Scholar
  53. 53.
    K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, 3rd edn. (John Wiley & Sons, New York, 1978)Google Scholar
  54. 54.
    S.N.B. Hodgson, L. Weng, J. Sol–Gel Sci. Tech. 18(2), 145 (2000)CrossRefGoogle Scholar
  55. 55.
    S.N.B. Hodgson, L. Weng, S.M. Tracey, IEE Colloquium (Digest) 412, 3/1 (1998)Google Scholar
  56. 56.
    M. Giulio, R. Rella, P. Siciliano, S. Cucurachi. Vacuum 43, 305 (1992)CrossRefGoogle Scholar
  57. 57.
    L.G. Hubert-Pfalzgraf, New J. Chem. 11, 663 (1987)Google Scholar
  58. 58.
    J.D. Mackenzie, J. Non-Cryst. Solids 48, 1 (1982)CrossRefGoogle Scholar
  59. 59.
    G. Brady, J. Chem. Phys. 27, 300 (1957)CrossRefGoogle Scholar
  60. 60.
    S. Kim, T. Yoko, S. Sakka, J. Am. Ceram. Soc. 76, 2486 (1993)CrossRefGoogle Scholar
  61. 61.
    J.E. Stanworth, J. Soc. Glass Tech. 36, 217 (1962)Google Scholar
  62. 62.
    Y. Dimitriev, M. Marinov and Stoyanov A. Acad. Bulg. Sci. 21, 661 (1968)Google Scholar
  63. 63.
    E.D. Zanotto, J. Non-Cryst. Solids. 147148, 820 (1992)CrossRefGoogle Scholar
  64. 64.
    M.E. Lines, J. Appl. Phys. 69, 6876 (1991)CrossRefGoogle Scholar
  65. 65.
    H. Yamamoto, H. Nasu, J. Matsuoka, K. Kamiya, J. Non-Cryst. Solids 170(1), 87 (1994)CrossRefGoogle Scholar
  66. 66.
    H. Pui Ho, W.W. Wong, S.Y. Wu, Opt. Eng 42(8), 2349 (2003)CrossRefGoogle Scholar
  67. 67.
    M. Zelner, H. Minti, R. Reisfeld, H. Cohen, Y. Feldman, S.R. Cohen, R. Tennhe, J. Sol–Gel Sci. Tech. 20, 153 (2001)CrossRefGoogle Scholar
  68. 68.
    A. Huriet, S. Daniele, L.G. Hubert Pfalzgraf, Mater. Lett. 59, 2379 (2005)CrossRefGoogle Scholar
  69. 69.
    N. Uchida, Phys. Rev. B 4, 10, 3736 (1971)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Science and TechnologyUniversity of TeessideMiddlesbroughUK
  2. 2.Shenzen Graduate SchoolHarbin Institute of TechnologyShenzenChina

Personalised recommendations