Characterization of polystyrene and doped polymethylmethacrylate thin layers

  • T. Podgrabinski
  • E. Hrabovská
  • V. Švorčík
  • V. Hnatowicz


About 1 μm thick films of polystyrene (PS) and polymethylmethacrylate (PMMA) were prepared from solutions using spin-coating method. The PMMA films were doped with diphenylsulfoxide (DS) up to 45 wt%. Glass transition temperature (T g ) of doped PMMA films was determined by DSC technique and relative permittivity (ε) as a function of the sample temperature was determined from capacitance measurement. The dependence of polarization (P) on electric field (E) and the temperature was measured using a standard Sawyer-Tower circuit. Spectral dependence of film refractive index was measured using a refractometer. The glass transition temperature T g of PMMA/DS composite was found to be decreasing function of the DS concentration. Relative permittivity ε of unpolar PS is lower than that of polar PMMA. The PS permittivity does not depend on the sample temperature. For PMMA the permittivity is increasing function of both, DS dopant concentration and sample temperature. The dependence of the polarization on the electric field on PS film does not exhibit a hysteresis and indicate no polarization contrary to PMMA. PMMA/DS composites exhibit easier and larger polaribility and a permanent dipole moment. Resulting polarization is an increasing function of DS concentration. Refractive index of both pristine PS and PMMA decreases with increasing wave length. The refractive index of PMMA/DS composites depends on the DS concentration.


Refractive Index PMMA Polymethylmethacrylate Glass Transition Temperature Sample Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. RECHMANIS, in “Microelectronics Technology: Polymers for Advanced Imaging and Packaging” (American Chemical Society, Washington, DC, 1995).Google Scholar
  2. 2.
    S. YU, P. HING and X. HU, J. Appl. Phys. 88 (2000) 398.Google Scholar
  3. 3.
    B. PLOSS, B. PLOSS, F. G. SHIN, H. L. W. CHAN and C. L. CHOY, Appl. Phys. Lett. 76 (2000) 2776.CrossRefGoogle Scholar
  4. 4.
    K. S. PATEL, P. A. KOHL and S. A. B. ALLEN, J. Polym. Sci. B38 (2000) 1634.Google Scholar
  5. 5.
    R. TECKLENBURG, G. PAASCH and S. SCHEINERT, Adv. Mater. Opt. Elektron. 8 (1998) 285.Google Scholar
  6. 6.
    H. B. SHARMA, H. N. K. SARMA and A. MANSINGH, J. Appl. Phys. 85 (1999) 341.Google Scholar
  7. 7.
    S. KIM, T. FUJIMOTO, T. MANABE, I. YAMAGUCHI, T. KUMAGAI and S. MIZUTA, J. Mater. Res. 14 (1999) 592.Google Scholar
  8. 8.
    B. H. HOERMAN, G. M. FORD, L. D. KAUFMANN and B. W. WESSELS, Appl. Phys. Lett. 73 (1998) 2248.CrossRefGoogle Scholar
  9. 9.
    J. BENAVENTE, J. M. GARCIA, R. RILEY, A. E. LOZANO and J. DE ABAJO, J. Membr. Sci. 175 (2000) 43.CrossRefGoogle Scholar
  10. 10.
    R. L. CLOUGHT, Nucl. Instrum. Meth. B185 (2001) 8.Google Scholar
  11. 11.
    A. RYTTEL, J. Macromol. Sci. A 34 (1997) 211.Google Scholar
  12. 12.
    L. C. COSTA, F. HENRY, M. A. VALENTE, S. K. MENDIRATTA and A. S. SOMARA, Eur. Polym. J. 38 (2002) 1495.Google Scholar
  13. 13.
    I. CENDOYA, D. POLEZ, A. ALGERIA and C. MIJANGOS, J. Polym. Sci. B39 (2001) 1968.Google Scholar
  14. 14.
    S. ETIENNE, C. STOCHMIL and J. L. BESSEDE, J. Alloys. Comp. 310 (2000) 368.Google Scholar
  15. 15.
    Y. BAI, Z. Y. CHEBY, V. BHARTI, S. H. XU and Q. M. ZHANG, Appl. Phys. Lett. 76 (2000) 3804.Google Scholar
  16. 16.
    H. S. NALWA, in “Ferroelectric Polymer” (Marcel Dekker, New York, 1995).Google Scholar
  17. 17.
    V. ŠVORČÍK, J. KRÁLOVÁ, V. RYBKA, J. PLEŠEK and V. HNATOWICZ, J. Polym. Sci. B39 (2001) 831.Google Scholar
  18. 18.
    V. ŠVORČÍK, R. GARDÁŠOVÁ, V. RYBKA, J. PLEŠ EK and V. HNATOWICZ, J. Appl. Polym. Sci. 91 (2004) 40.Google Scholar
  19. 19.
    C. B. SAWYER and C. H. TOWER, Phys. Rew. 35 (1930) 269.Google Scholar
  20. 20.
    J. M. KOO, J. KIM and E. G. LEE, J. Mater. Sci. Lett. 21 (2002) 653.CrossRefGoogle Scholar
  21. 21.
    V. ŠVORČÍK, T. PODGRABINSKI, J. NÁ HLÍK, V. RYBKA and V. HNATOWICZ, Mater. Lett. 59 (2005) 341.Google Scholar
  22. 22.
    R. P. QUICK and M. A. A. ALSAMARRAIE, in “Polymer Handbook”, 3rd edition (John Wiley & Sons, New York, 1989).Google Scholar
  23. 23.
    E. A. SALEH and M. C. TEICH, in “Fundamentals of Photonics” (John Wiley & Sons, New York, 1991).Google Scholar
  24. 24.
    V. ŠVORČÍK, M. PRAJER, I. HUTTEL, V. RYBKA and J. PLEŠEK, Mater. Lett. 59 (2005) 280.Google Scholar
  25. 25.
    R. R. THOMAS, in “Fluorpolymers 2, Properties” (Plenum Press, New York, 1999).Google Scholar
  26. 26.
    V. ŠVORČÍ K, O. EKRT, V. RYBKA and J. LIPTÁK, J. Mater. Sci. Lett. 19 (2000) 1843.Google Scholar
  27. 27.
    D. K. LIDE, in “Handbook of Chemistry and Physics” (CRC Press, New York, 1996).Google Scholar
  28. 28.
    D. W. VAN KREVELEN, in “Properties of Polymers” (Elsevier, Amsterdam, 1976).Google Scholar
  29. 29.
    H. J. FRISSEL, Eng. Plast. 2 (1988) 467.Google Scholar
  30. 30.
    D. J. DAVID and A. MISTRA, in “Relating Materials Properties to Structure: Handbook and Software for Polymer Calculation and Materials Properties” (Technomic, Lancaster, 1999).Google Scholar
  31. 31.
    I. PROSYCEVAS, S. TAMULEVICIUS and A. GUOBIE- NE, Thin Solid Films 453 (2004) 304.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • T. Podgrabinski
    • 1
  • E. Hrabovská
    • 1
  • V. Švorčík
    • 1
  • V. Hnatowicz
    • 2
  1. 1.Department of Solid State EngineeringInstitute of Chemical TechnologyPragueCzech Republic
  2. 2.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicŘežCzech Republic

Personalised recommendations