Skip to main content
Log in

Characterization of polystyrene and doped polymethylmethacrylate thin layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

About 1 μm thick films of polystyrene (PS) and polymethylmethacrylate (PMMA) were prepared from solutions using spin-coating method. The PMMA films were doped with diphenylsulfoxide (DS) up to 45 wt%. Glass transition temperature (T g ) of doped PMMA films was determined by DSC technique and relative permittivity (ε) as a function of the sample temperature was determined from capacitance measurement. The dependence of polarization (P) on electric field (E) and the temperature was measured using a standard Sawyer-Tower circuit. Spectral dependence of film refractive index was measured using a refractometer. The glass transition temperature T g of PMMA/DS composite was found to be decreasing function of the DS concentration. Relative permittivity ε of unpolar PS is lower than that of polar PMMA. The PS permittivity does not depend on the sample temperature. For PMMA the permittivity is increasing function of both, DS dopant concentration and sample temperature. The dependence of the polarization on the electric field on PS film does not exhibit a hysteresis and indicate no polarization contrary to PMMA. PMMA/DS composites exhibit easier and larger polaribility and a permanent dipole moment. Resulting polarization is an increasing function of DS concentration. Refractive index of both pristine PS and PMMA decreases with increasing wave length. The refractive index of PMMA/DS composites depends on the DS concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. RECHMANIS, in “Microelectronics Technology: Polymers for Advanced Imaging and Packaging” (American Chemical Society, Washington, DC, 1995).

  2. S. YU, P. HING and X. HU, J. Appl. Phys. 88 (2000) 398.

    CAS  Google Scholar 

  3. B. PLOSS, B. PLOSS, F. G. SHIN, H. L. W. CHAN and C. L. CHOY, Appl. Phys. Lett. 76 (2000) 2776.

    Article  CAS  Google Scholar 

  4. K. S. PATEL, P. A. KOHL and S. A. B. ALLEN, J. Polym. Sci. B38 (2000) 1634.

    Google Scholar 

  5. R. TECKLENBURG, G. PAASCH and S. SCHEINERT, Adv. Mater. Opt. Elektron. 8 (1998) 285.

    CAS  Google Scholar 

  6. H. B. SHARMA, H. N. K. SARMA and A. MANSINGH, J. Appl. Phys. 85 (1999) 341.

    CAS  Google Scholar 

  7. S. KIM, T. FUJIMOTO, T. MANABE, I. YAMAGUCHI, T. KUMAGAI and S. MIZUTA, J. Mater. Res. 14 (1999) 592.

    CAS  Google Scholar 

  8. B. H. HOERMAN, G. M. FORD, L. D. KAUFMANN and B. W. WESSELS, Appl. Phys. Lett. 73 (1998) 2248.

    Article  CAS  Google Scholar 

  9. J. BENAVENTE, J. M. GARCIA, R. RILEY, A. E. LOZANO and J. DE ABAJO, J. Membr. Sci. 175 (2000) 43.

    Article  CAS  Google Scholar 

  10. R. L. CLOUGHT, Nucl. Instrum. Meth. B185 (2001) 8.

    Google Scholar 

  11. A. RYTTEL, J. Macromol. Sci. A 34 (1997) 211.

    Google Scholar 

  12. L. C. COSTA, F. HENRY, M. A. VALENTE, S. K. MENDIRATTA and A. S. SOMARA, Eur. Polym. J. 38 (2002) 1495.

    CAS  Google Scholar 

  13. I. CENDOYA, D. POLEZ, A. ALGERIA and C. MIJANGOS, J. Polym. Sci. B39 (2001) 1968.

    Google Scholar 

  14. S. ETIENNE, C. STOCHMIL and J. L. BESSEDE, J. Alloys. Comp. 310 (2000) 368.

    CAS  Google Scholar 

  15. Y. BAI, Z. Y. CHEBY, V. BHARTI, S. H. XU and Q. M. ZHANG, Appl. Phys. Lett. 76 (2000) 3804.

    CAS  Google Scholar 

  16. H. S. NALWA, in “Ferroelectric Polymer” (Marcel Dekker, New York, 1995).

    Google Scholar 

  17. V. ŠVORČÍK, J. KRÁLOVÁ, V. RYBKA, J. PLEŠEK and V. HNATOWICZ, J. Polym. Sci. B39 (2001) 831.

    Google Scholar 

  18. V. ŠVORČÍK, R. GARDÁŠOVÁ, V. RYBKA, J. PLEŠ EK and V. HNATOWICZ, J. Appl. Polym. Sci. 91 (2004) 40.

    Google Scholar 

  19. C. B. SAWYER and C. H. TOWER, Phys. Rew. 35 (1930) 269.

    CAS  Google Scholar 

  20. J. M. KOO, J. KIM and E. G. LEE, J. Mater. Sci. Lett. 21 (2002) 653.

    Article  CAS  Google Scholar 

  21. V. ŠVORČÍK, T. PODGRABINSKI, J. NÁ HLÍK, V. RYBKA and V. HNATOWICZ, Mater. Lett. 59 (2005) 341.

    Google Scholar 

  22. R. P. QUICK and M. A. A. ALSAMARRAIE, in “Polymer Handbook”, 3rd edition (John Wiley & Sons, New York, 1989).

  23. E. A. SALEH and M. C. TEICH, in “Fundamentals of Photonics” (John Wiley & Sons, New York, 1991).

    Google Scholar 

  24. V. ŠVORČÍK, M. PRAJER, I. HUTTEL, V. RYBKA and J. PLEŠEK, Mater. Lett. 59 (2005) 280.

    Google Scholar 

  25. R. R. THOMAS, in “Fluorpolymers 2, Properties” (Plenum Press, New York, 1999).

    Google Scholar 

  26. V. ŠVORČÍ K, O. EKRT, V. RYBKA and J. LIPTÁK, J. Mater. Sci. Lett. 19 (2000) 1843.

    Google Scholar 

  27. D. K. LIDE, in “Handbook of Chemistry and Physics” (CRC Press, New York, 1996).

    Google Scholar 

  28. D. W. VAN KREVELEN, in “Properties of Polymers” (Elsevier, Amsterdam, 1976).

    Google Scholar 

  29. H. J. FRISSEL, Eng. Plast. 2 (1988) 467.

    Google Scholar 

  30. D. J. DAVID and A. MISTRA, in “Relating Materials Properties to Structure: Handbook and Software for Polymer Calculation and Materials Properties” (Technomic, Lancaster, 1999).

  31. I. PROSYCEVAS, S. TAMULEVICIUS and A. GUOBIE- NE, Thin Solid Films 453 (2004) 304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Švorčík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podgrabinski, T., Hrabovská, E., Švorčík, V. et al. Characterization of polystyrene and doped polymethylmethacrylate thin layers. J Mater Sci: Mater Electron 16, 761–765 (2005). https://doi.org/10.1007/s10854-005-4980-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-4980-7

Keywords

Navigation