Skip to main content
Log in

Dielectric and a.c. conductivity studies in pure and manganese doped layered K2Ti4O9 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The results of a.c. electrical conductivity studies have been reported on pure K2Ti4O9 (named PT) and its 1.0 molar percentage of MnO2 doped derivative (named MPT) ceramics in the temperature range 373–898 K. Four regions have been identified in the log(σa.c. T) versus 1000/T plots. Conduction in the lowest temperature region I is attributed to the mixed exchangeable interlayer ionic and electronic hopping (polaron) conduction. A dielectric loss peak with distribution of relaxation times perturbs the conduction in next regions II and III. However, in region III for both the samples non-relaxor ferroelectric property may be proposed. The modified interlayer ionic conduction has been proposed towards the higher temperature region IV. Loss tangent (tan δ) versus frequency and dielectric constant (ε) versus frequency plots at different temperatures have also been given for both the samples. The results of tan δ versus temperature and ε versus temperature at different frequencies have further been reported for both of the above compounds in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. LE GRANVALET-MANCINI, L. BROHAN, A. M. MARIE and M. TOURNUOX, Eur. J. Solid State Inorg. Chem. 31 (1994) 767.

    Google Scholar 

  2. A. KUDO and T. SAKATA, J. Matter. Chem. 3 (1993) 1081.

    Article  Google Scholar 

  3. A. KUDO and T. KONDO, ibid. 7(5) (1997) 777.

    Google Scholar 

  4. M. SHIBATA, A. KUDO, A. TANAKA, K. DOMEN, K. MARUYA and T. ONISHI, Chem. Lett. 6 (1987) 1017.

    Google Scholar 

  5. S. ANDERSON and A. D. WADSLEY, Acta Chem. Scand. 15 (1961) 663.

    Google Scholar 

  6. A. VERBAERE and M. TOURNOUX, Bull Soc. Chim. France 4 (1973) 1237.

    Google Scholar 

  7. T. SASAKI, M. WATANABE, Y. KOMATSU and Y. FUJUKI, Inorg. Chem. 24 (1985) 2265.

    Article  Google Scholar 

  8. M. SUGITA, M. TSUJI and M. ABE, Bull. Chem. Soc. Jpn. 63 (1990) 1978.

    Google Scholar 

  9. T. YAMAWAKI, K. ETO and H. SAKAI, Patent; Jpn. Kokai Tokkyo Koho, Jp 2000302547, A2 (2000).

  10. Y. XU, Q. FENG, K. KAJIYOSHI and K. YANAGISAWA, Chem. Mater. 14 (2002) 697–703.

    Article  Google Scholar 

  11. TOHIMA, N. MASAKI, S. UCHIDA and T. SATO, J. Mater. Sci. 37 (2002) 2341.

    Article  Google Scholar 

  12. M. DION, Y. PIFFARD and M. TOURNOUX, J. Inorg. Nucl. Chem. 40 (1978) 917.

    Article  Google Scholar 

  13. M. TOURNOUX, R. MARCHAND and L. BROHAN, Prog. Solid State Chem. 17 (1986) 33.

    Article  Google Scholar 

  14. R. MARCHAND, L. BROHAN, R. M. BEDI and M. TOURNOUX, Revue de Chimie Minerals 21 (1984) 476.

    Google Scholar 

  15. N. MASAKI, S. UCHIDA, H. YAMANE and T. SATO, J. Mater. Sci. 35 (2000) 3307–3311.

    Article  Google Scholar 

  16. N. MASAKI, S. UCHIDA and T. SATO, J. Mater. Chem. 12 (2002) 305–308.

    Article  Google Scholar 

  17. T. SATO, Y. YAMAMOTO, Y. FUJISHIRO and S. UCHIDA, J. Chem. Soc. Faraday Trans. 92(24) (1996) 5089.

    Article  Google Scholar 

  18. S. UCHIDA Y. YAMAMOTO, Y. FUJISHIRO, A. WATANABE, O. ITO and T. SATO, J. Chem. Soc. Faraday Trans. 93(17) (1997) 3229.

    Article  Google Scholar 

  19. S. YIN, S. UCHIDA, Y. FUJISHIRO, M. AKI and T. SATO, J. Mater. Chem., 9(5) (1999) 1191.

    Article  Google Scholar 

  20. S. YIN, S. UCHIDA, Y. FUJISHIRO, J. WU, M. AKI and T. SATO, Int. J. Inorg. Mater. 2 (2000) 325.

    Article  Google Scholar 

  21. M. MACHIDA, X. W. MA, H. TANIGUCHI, J. YABUNAKA and T. KIJIMA, J. Mol. Cat. A Chem.155(1/2) (2000) 131.

    Article  Google Scholar 

  22. S. OGURA, R. SATO and Y. INOUE, Phys. Chem. 2(10) (2000) 2449.

    Article  Google Scholar 

  23. SHRIPAL, S. D. PANDEY and PREMCHAND, Solid State Commun. 69 (1989) 1203.

    Article  Google Scholar 

  24. SHRIPAL, A.K. MISRA, S.D. PANDEY and R. P. TANDON, Eru. J. Solid State Inorg. Chem. 29 (1992) 229.

    Google Scholar 

  25. SHRIPAL, R. P. TANDON and S. D. PANDEY, J. Phys. Chem. Solids 52 (1991) 1101.

    Article  Google Scholar 

  26. SHRIPAL, S. BADHWAR, D. MAURYA, J. KUMAR and R. P. TANDON, Proceedings of Advances in Condensed Matter Physics, Patiala, Feb. 2005, edited by K. K. Raina (Allied Publishers, New Delhi, 2005) p.250.

    Google Scholar 

  27. R. DAWAR, SHRIPAL and S. D. PANDEY, Bull Mat. Sci. 11 (1986) 303.

    Google Scholar 

  28. N. F. MOTT and E. A. DAVIS, Electronic Processes in Non-crystalline Materials, Oxford Clarendon Press, 1971.

  29. M. BOTTGER and V. V. BREYKSIN, Phys. Status Solidi B 9 (1976) 79.

    Article  Google Scholar 

  30. M. POLLOCK and T. H. GEABLE, Phys. Rev. 122 (1961) 1742.

    Article  Google Scholar 

  31. G. E. PIKE, Phys. Rev. B 6 (1972) 1571.

    Article  Google Scholar 

  32. A. MANSINGH, R. P. TANDON and J. K. VAID, Physical Review B 21(10) (1980) 4829.

    Article  Google Scholar 

  33. B. P. DAS, R. N. P. CHAUDHARY and P. K. MAHAPATRA, Mater. Sci. and Engg. B 104 (2003) 96.

    Article  Google Scholar 

  34. B. TAREEV, in “Physics of Dielectric Materials”(Mir Publishers Moscow, 1979) p.103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shripal, Badhwar, S., Maurya, D. et al. Dielectric and a.c. conductivity studies in pure and manganese doped layered K2Ti4O9 ceramics. J Mater Sci: Mater Electron 16, 495–500 (2005). https://doi.org/10.1007/s10854-005-2723-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-2723-4

Keywords

Navigation