Dielectric and a.c. conductivity studies in pure and manganese doped layered K2Ti4O9 ceramics

  • Shripal
  • S. Badhwar
  • Deepam Maurya
  • Jitendra Kumar


The results of a.c. electrical conductivity studies have been reported on pure K2Ti4O9 (named PT) and its 1.0 molar percentage of MnO2 doped derivative (named MPT) ceramics in the temperature range 373–898 K. Four regions have been identified in the log(σa.c. T) versus 1000/T plots. Conduction in the lowest temperature region I is attributed to the mixed exchangeable interlayer ionic and electronic hopping (polaron) conduction. A dielectric loss peak with distribution of relaxation times perturbs the conduction in next regions II and III. However, in region III for both the samples non-relaxor ferroelectric property may be proposed. The modified interlayer ionic conduction has been proposed towards the higher temperature region IV. Loss tangent (tan δ) versus frequency and dielectric constant (ε) versus frequency plots at different temperatures have also been given for both the samples. The results of tan δ versus temperature and ε versus temperature at different frequencies have further been reported for both of the above compounds in this paper.


Electrical Conductivity Manganese Dielectric Constant Relaxation Time Electronic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. LE GRANVALET-MANCINI, L. BROHAN, A. M. MARIE and M. TOURNUOX, Eur. J. Solid State Inorg. Chem. 31 (1994) 767.Google Scholar
  2. 2.
    A. KUDO and T. SAKATA, J. Matter. Chem. 3 (1993) 1081.CrossRefGoogle Scholar
  3. 3.
    A. KUDO and T. KONDO, ibid. 7(5) (1997) 777.Google Scholar
  4. 4.
    M. SHIBATA, A. KUDO, A. TANAKA, K. DOMEN, K. MARUYA and T. ONISHI, Chem. Lett. 6 (1987) 1017.Google Scholar
  5. 5.
    S. ANDERSON and A. D. WADSLEY, Acta Chem. Scand. 15 (1961) 663.Google Scholar
  6. 6.
    A. VERBAERE and M. TOURNOUX, Bull Soc. Chim. France 4 (1973) 1237.Google Scholar
  7. 7.
    T. SASAKI, M. WATANABE, Y. KOMATSU and Y. FUJUKI, Inorg. Chem. 24 (1985) 2265.CrossRefGoogle Scholar
  8. 8.
    M. SUGITA, M. TSUJI and M. ABE, Bull. Chem. Soc. Jpn. 63 (1990) 1978.Google Scholar
  9. 9.
    T. YAMAWAKI, K. ETO and H. SAKAI, Patent; Jpn. Kokai Tokkyo Koho, Jp 2000302547, A2 (2000).Google Scholar
  10. 10.
    Y. XU, Q. FENG, K. KAJIYOSHI and K. YANAGISAWA, Chem. Mater. 14 (2002) 697–703.CrossRefGoogle Scholar
  11. 11.
    TOHIMA, N. MASAKI, S. UCHIDA and T. SATO, J. Mater. Sci. 37 (2002) 2341.CrossRefGoogle Scholar
  12. 12.
    M. DION, Y. PIFFARD and M. TOURNOUX, J. Inorg. Nucl. Chem. 40 (1978) 917.CrossRefGoogle Scholar
  13. 13.
    M. TOURNOUX, R. MARCHAND and L. BROHAN, Prog. Solid State Chem. 17 (1986) 33.CrossRefGoogle Scholar
  14. 14.
    R. MARCHAND, L. BROHAN, R. M. BEDI and M. TOURNOUX, Revue de Chimie Minerals 21 (1984) 476.Google Scholar
  15. 15.
    N. MASAKI, S. UCHIDA, H. YAMANE and T. SATO, J. Mater. Sci. 35 (2000) 3307–3311.CrossRefGoogle Scholar
  16. 16.
    N. MASAKI, S. UCHIDA and T. SATO, J. Mater. Chem. 12 (2002) 305–308.CrossRefGoogle Scholar
  17. 17.
    T. SATO, Y. YAMAMOTO, Y. FUJISHIRO and S. UCHIDA, J. Chem. Soc. Faraday Trans. 92(24) (1996) 5089.CrossRefGoogle Scholar
  18. 18.
    S. UCHIDA Y. YAMAMOTO, Y. FUJISHIRO, A. WATANABE, O. ITO and T. SATO, J. Chem. Soc. Faraday Trans. 93(17) (1997) 3229.CrossRefGoogle Scholar
  19. 19.
    S. YIN, S. UCHIDA, Y. FUJISHIRO, M. AKI and T. SATO, J. Mater. Chem., 9(5) (1999) 1191.CrossRefGoogle Scholar
  20. 20.
    S. YIN, S. UCHIDA, Y. FUJISHIRO, J. WU, M. AKI and T. SATO, Int. J. Inorg. Mater. 2 (2000) 325.CrossRefGoogle Scholar
  21. 21.
    M. MACHIDA, X. W. MA, H. TANIGUCHI, J. YABUNAKA and T. KIJIMA, J. Mol. Cat. A Chem.155(1/2) (2000) 131.CrossRefGoogle Scholar
  22. 22.
    S. OGURA, R. SATO and Y. INOUE, Phys. Chem. 2(10) (2000) 2449.CrossRefGoogle Scholar
  23. 23.
    SHRIPAL, S. D. PANDEY and PREMCHAND, Solid State Commun. 69 (1989) 1203.CrossRefGoogle Scholar
  24. 24.
    SHRIPAL, A.K. MISRA, S.D. PANDEY and R. P. TANDON, Eru. J. Solid State Inorg. Chem. 29 (1992) 229.Google Scholar
  25. 25.
    SHRIPAL, R. P. TANDON and S. D. PANDEY, J. Phys. Chem. Solids 52 (1991) 1101.CrossRefGoogle Scholar
  26. 26.
    SHRIPAL, S. BADHWAR, D. MAURYA, J. KUMAR and R. P. TANDON, Proceedings of Advances in Condensed Matter Physics, Patiala, Feb. 2005, edited by K. K. Raina (Allied Publishers, New Delhi, 2005) p.250.Google Scholar
  27. 27.
    R. DAWAR, SHRIPAL and S. D. PANDEY, Bull Mat. Sci. 11 (1986) 303.Google Scholar
  28. 28.
    N. F. MOTT and E. A. DAVIS, Electronic Processes in Non-crystalline Materials, Oxford Clarendon Press, 1971.Google Scholar
  29. 29.
    M. BOTTGER and V. V. BREYKSIN, Phys. Status Solidi B 9 (1976) 79.CrossRefGoogle Scholar
  30. 30.
    M. POLLOCK and T. H. GEABLE, Phys. Rev. 122 (1961) 1742.CrossRefGoogle Scholar
  31. 31.
    G. E. PIKE, Phys. Rev. B 6 (1972) 1571.CrossRefGoogle Scholar
  32. 32.
    A. MANSINGH, R. P. TANDON and J. K. VAID, Physical Review B 21(10) (1980) 4829.CrossRefGoogle Scholar
  33. 33.
    B. P. DAS, R. N. P. CHAUDHARY and P. K. MAHAPATRA, Mater. Sci. and Engg. B 104 (2003) 96.CrossRefGoogle Scholar
  34. 34.
    B. TAREEV, in “Physics of Dielectric Materials”(Mir Publishers Moscow, 1979) p.103.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Shripal
    • 1
  • S. Badhwar
    • 1
  • Deepam Maurya
    • 1
  • Jitendra Kumar
    • 2
  1. 1.Department of PhysicsP.P.N. CollegeKanpurIndia
  2. 2.Materials Science ProgrammeI.I.T.KanpurIndia

Personalised recommendations