Advertisement

Structural and electrical characterization of AgInS2 thin films grown by single-source thermal evaporation method

  • Y. Akaki
  • S. Kurihara
  • M. Shirahama
  • K. Tsurugida
  • T. Kakeno
  • K. Yoshino
Article

Abstract

Structural and electrical properties of AgInS2 (AIS) thin films grown by single-source thermal evaporation method were studied. The X-ray diffraction spectra indicated that the AIS single phase was successfully grown by annealing above 400∘C in air. The grain size of the AIS crystals was above 2.5 μm from the surface photograph. Furthermore, the AIS grain sizes became large with increasing the annealing temperatures. All the samples indicated n-type conduction by the Van der Pauw technique. The carrier concentrations and the resistivities of the AIS films at room temperature were in the range of 1019–1022 cm−3 and 10−1–10−3 Ωcm, respectively. Therefore the mobilities increased from 0.6 to 6.0 cm2/Vs with increasing the grain sizes.

Keywords

Grain Size Thin Film Evaporation Electrical Property Electronic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. RAMANATHAN, M. A. CONTRERAS, C. L. PERKINS, S. ASHER, F. S. HASOON, J. KEANE, D. YOUNG, M. ROMERO, W. METZGER, R. NOUFI, J. WARD and A. DUDA, Prog. Photovol. Res. Appl. 11 (2003) 225.CrossRefGoogle Scholar
  2. 2.
    J. L. SHAY, B. TELL, L. M. SCHIAVONE, H. M. KASPER and F. THIEL, Phys. Rev. B. 9 (1972) 1719.CrossRefGoogle Scholar
  3. 3.
    L. L. KAZMERSKI, M. S. AYYAGARI and G. A. SANBORN, J. Appl. Phys. 46 (1975) 4865.CrossRefGoogle Scholar
  4. 4.
    S. NIKI, Y. MAKITA, A. YAMADA, O. HELLMAN, P. J. FONS, A. OBARA, Y. Okada, R. SHIODA, H. OYANAGI, T. KURAFUJI, S. CHICHIBU and H. NAKANISHI, J. Cryst. Growth 150 (1995) 1201.CrossRefGoogle Scholar
  5. 5.
    S. H. YOU, K. J. HONG, C. J. YOUN, T. S. JEONG, J. D. MOON, H. S. KIM and J. S. PARK, J. Appl. Phys. 90 (2001) 3894.CrossRefGoogle Scholar
  6. 6.
    B. PAMPLIN and R. S. FEIGELSON, Thin Solid Films 60 (1979) 141.CrossRefGoogle Scholar
  7. 7.
    M. GORSKA, R. BEAULIEU, J. J. LOFERSKE and B. ROESSLER, Thin Solid Film 67 (1980) 341.CrossRefGoogle Scholar
  8. 8.
    Y. AKAKI, H. KOMAKI, K. YOSHINO and T. IKARI, J. Mater. Sci. 64 (2003) 1863.Google Scholar
  9. 9.
    Y. AKAKI, H. KOMAKI, H. YOKOYAMA, K. YOSHINO, K. MAEDA and T. IKARI, J. Phys. Chem. Solids 64 (2003) 1863.CrossRefGoogle Scholar
  10. 10.
    K. YOSHINO, H. KOMAKI, T. KAKENO, Y. AKAKI and Y. IKARI, J. Phys. Chem. Solids 64 (2003) 1839.CrossRefGoogle Scholar
  11. 11.
    JCPDS file No. 25–1330.Google Scholar
  12. 12.
    Y. AKAKI, H. KOMAKI, K. YOSHINO and T. IKARI, J. Vac. Sci. Tech. 20 (2002) 1486.CrossRefGoogle Scholar
  13. 13.
    K. HATTORI, K. AKAMATSU and J. N. KAMEGASHIRA, J. Appl. Phys. 71 (1992) 3414.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Y. Akaki
    • 1
  • S. Kurihara
    • 1
  • M. Shirahama
    • 1
  • K. Tsurugida
    • 1
  • T. Kakeno
    • 2
  • K. Yoshino
    • 2
  1. 1.Miyakonojo National College of TechnologyMiyakonojoJapan
  2. 2.Department of Electrical and Electronic EngineeringMiyazaki UniversityMiyazakiJapan

Personalised recommendations