Skip to main content
Log in

Influence of Mn–Si elements on the kinetics of oxidative phase transformation under continuous cooling conditions and modeling study

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a simultaneous thermal analyzer carried out isothermal eutectoid transformation experiments of Fe–0.4Mn, Fe–1.2Mn, and Fe–1.2Mn–0.2Si alloys. The kinetic model of the isothermal phase transformation of FeO was established using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation combined with the experimental data. The kinetic model of the eutectoid transformation of FeO in a non-isothermal process was also established based on Scheil's additivity rule and the mapped-out FeO. The CCT diagram shows that increasing the Mn content and adding Si elements during the continuous cooling process cause the phase zone where the FeO layer undergoes eutectoid transformation to shift to the right. Due to the similarity of crystal structures, the (Fe, Mn)O solid solution formed by FeO and MnO improves the stability of FeO. Mn2+ widens the spacing between oxide ions, and with the increase in Mn content, the Gibbs energy of the formation of (Fe, Mn)O becomes too small to compensate for that of the formation of α-Fe from (Fe, Mn)O. In addition, the temperature point at which the phase transformation of FeO occurs decreases with the increase in Mn content, resulting in the decrease in phase transformation supercooling, so the increase in Mn content will inhibit the eutectoid transformation. The addition of elemental Si resulted in the formation of a cation-deficient FeO with higher O content and lower Fe content, and the time for the Fe2+ concentration to reach supersaturation was prolonged, thus further inhibiting the onset of the eutectoid transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Li ZF, Cao GM, Lin F, Cui CY, Wang H, Liu ZY (2018) Phase transformation behavior of oxide scale on plain carbon steel containing 0.4 wt% Cr during continuous cooling. ISIJ Int 58(12):2338–2347. https://doi.org/10.2355/isijinternational.ISIJINT-2018-365

    Article  CAS  Google Scholar 

  2. Xing LD, Gu C, Lv ZY, Bao YP (2022) High-temperature internal oxidation behavior of surface cracks in low alloy steel bloom. Corros Sci 197:110076. https://doi.org/10.1016/j.corsci.2021.110076

    Article  CAS  Google Scholar 

  3. Chen RY, Yuen WYD (2001) Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms. Oxid Met 56(1–2):89–118. https://doi.org/10.1023/A:1010395419981

    Article  CAS  Google Scholar 

  4. Cao GM, Wu TZ, Xu R, Li ZF, Wang FX, Liu ZY (2015) Effects of coiling temperature and cooling condition on transformation behavior of tertiary oxide scale. J Iron Steel Res Int 22(10):892–896. https://doi.org/10.1016/S1006-706X(15)30086-8

    Article  CAS  Google Scholar 

  5. Hayashi S, Yoneda S, Kondo Y, Tanei H (2020) Phase transformation of thermally grown FeO formed on high-purity Fe at low oxygen potential. Oxid Met 94(1–2):81–93. https://doi.org/10.1007/s11085-020-09979-2

    Article  CAS  Google Scholar 

  6. Hayashi S, Mizumoto K, Yoneda S, Kondo Y, Tanei H, Ukai S (2014) The mechanism of phase transformation in thermally-grown FeO scale formed on pure-Fe in air. Oxid Met 81(3–4):357–371. https://doi.org/10.1007/s11085-013-9442-7

    Article  CAS  Google Scholar 

  7. Gleeson B, Hadavi SMM, Young DJ (2000) Isothermal transformation behavior of thermally-grown wüstite. Mater High Temp 17(2):311–318. https://doi.org/10.3184/096034000783640776

    Article  CAS  Google Scholar 

  8. Zhou CH, Ma HT, Li Y, Wang L (2012) Eutectoid magnetite in wüstite under conditions of compressive stress and cooling. Oxid Met 78(1–2):145–152. https://doi.org/10.1007/s11085-012-9296-4

    Article  CAS  Google Scholar 

  9. Zhang YD, Jin SB, Jiang CL, Yang JJ, Sha G (2022) Formation of high-temperature inner oxide scale on low alloy steels: segregation, partitioning and transformation reactions. Corros Sci 195:109980. https://doi.org/10.1016/j.corsci.2021.109980

    Article  CAS  Google Scholar 

  10. Shizukawa Y, Hayashi S, Yoneda S, Kondo Y, Tanei H, Ukai S (2016) Mechanism of magnetite seam formation and its role for FeO scale transformation. Oxid Met 86(3–4):315–326. https://doi.org/10.1007/s11085-016-9638-8

    Article  CAS  Google Scholar 

  11. Avrami M (1939) Kinetics of phase change I general theory. J Chem Phys 7(12):1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  12. Avrami M (1940) Kinetics of phase change II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  13. Kumar V, Dixit US (2018) A model for the estimation of hardness of laser bent strips. Opt Laser Technol 107:491–499. https://doi.org/10.1016/j.optlastec.2018.06.029

    Article  CAS  Google Scholar 

  14. Rezaei J, Parsa MH, Mirzadeh H (2023) Phase transformation kinetics of high-carbon steel during continuous heating. J Market Res 27:2524–2537. https://doi.org/10.1016/j.jmrt.2023.10.089

    Article  CAS  Google Scholar 

  15. Pohjonen A, Somani M, Porter D (2018) Modelling of austenite transformation along arbitrary cooling paths. Comp Mater Sci 150:244–251. https://doi.org/10.1016/j.commatsci.2018.03.052

    Article  CAS  Google Scholar 

  16. Cao GM, Shan WC, Wang CY, Zhou ZX, Liu ZY (2023) Isothermal structure transformation and kinetics behavior of oxide scale on low carbon steel. ISIJ Int 63(2):366–374. https://doi.org/10.2355/isijinternational.ISIJINT-2022-179

    Article  CAS  Google Scholar 

  17. Cao GM, Wang CY, Jiang YC, Li SL, Gao XY, Liu ZY (2022) Effect of Cr on isothermal structure transformation of iron oxide scale. Steel Res Int 94(5):2200512. https://doi.org/10.1002/srin.202200512

    Article  CAS  Google Scholar 

  18. Chen RY, Yuen WYD (2000) A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling. Oxid Met 53(5–6):539–560. https://doi.org/10.1023/A:1004637127231

    Article  CAS  Google Scholar 

  19. Lin SN, Huang CC, Wu MT, Wang WL, Hsieh KC (2017) Crucial mechanism to the eutectoid transformation of wüstite scale on low carbon steel. Steel Res Int 88(11):1700045. https://doi.org/10.1002/srin.201700045

    Article  CAS  Google Scholar 

  20. Yu XL, Jiang ZY, Zhao JW, Wei DB, Zhou CL (2013) Effect of cooling rate on oxidation behaviour of micro-alloyed steel. Appl Mech Mater 395–396:273–278. https://doi.org/10.4028/www.scientific.net/AMM.395-396.273

    Article  CAS  Google Scholar 

  21. Scheil E (1935) Anlaufzeit der austenitumwandlung. Steel Res 8(12):565–567. https://doi.org/10.1002/srin.193500186

    Article  CAS  Google Scholar 

  22. Zhang YT, Mo CL, Li DZ, Li YY (2003) Modelling of phase transformation of plain carbon steels during continuous cooling. J Mater Sci Technol 19(3):262–264

    CAS  Google Scholar 

  23. Zhang YT, Li DZ, Li YY (2006) Modeling of austenite decomposition in plain carbon steels during hot rolling. J Mater Process Tech 171(2):175–179. https://doi.org/10.1016/j.jmatprotec.2005.07.003

    Article  CAS  Google Scholar 

  24. Li HJ, Lin YC, Xiao N, Ning XY, Wang GD (2022) Softening behavior of deformed metals during continuous cooling and its relation to isothermal reactions. Mech Mater 167:104242. https://doi.org/10.1016/j.mechmat.2022.104242

    Article  Google Scholar 

  25. Polmear IJ (1959) Fatigue properties of ternary aluminium-zinc-magnesium alloys. Nature 183:1388–1389. https://doi.org/10.1038/1831388a0

    Article  CAS  Google Scholar 

  26. Ben Fredj E, Nanesa HG, Jahazi M, Morin JB (2018) Influence of initial microstructure and grain size on transformation of bainite to austenite in large size forgings. J Iron Steel Res Int 25(5):554–562. https://doi.org/10.1007/s42243-018-0070-y

    Article  Google Scholar 

  27. López-Martínez E, Vázquez-Gómez O, Vergara-Hernández HJ, Campillo B (2015) Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels. Int J Min Met Mater 22(12):1304–1312. https://doi.org/10.1007/s12613-015-1198-4

    Article  CAS  Google Scholar 

  28. Etesami SA, Enayati MH, Kalashami AG (2017) Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing. Mat Sci Eng A Struct 682:296–303. https://doi.org/10.1016/j.msea.2016.09.112

    Article  CAS  Google Scholar 

  29. Kirkaldy JS, Baganis EA (1978) Thermodynamic prediction of the ae3 temperature of steels with additions of Mn, Si, Ni, Cr, Mo. Cu Metall Trans A 9(4):495–501. https://doi.org/10.1007/BF02646405

    Article  Google Scholar 

  30. Liu F, Yang C, Yang G, Zhou Y (2007) Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater 55(15):5255–5267. https://doi.org/10.1016/j.actamat.2007.05.041

    Article  CAS  Google Scholar 

  31. Martin H, Amoako-Yirenkyi P, Pohjonen A, Frempong NK, Komi J, Somani M (2021) Statistical modeling for prediction of CCT diagrams of steels involving interaction of alloying elements. Metall Mater Trans B 52(1):223–235. https://doi.org/10.1007/s11663-020-01991-w

    Article  CAS  Google Scholar 

  32. Chen XJ, Xiao NM, Cai MH, Li DZ, Li GY, Sun GY, Rolfe BF (2016) A modified approach to modeling of diffusive transformation kinetics from nonisothermal data and experimental verification. Metall Mater Trans A 47(9):4732–4740. https://doi.org/10.1007/s11661-016-3608-2

    Article  CAS  Google Scholar 

  33. Sano T, Tsuji M, Tamaura Y (1997) Effect of foreign cation of Zn(II) or Mn(II) ion in FeO-wüstite on its disproportionation reaction below 575 °C. Solid State Ionics 104(3–4):311–317. https://doi.org/10.1016/S0167-2738(97)00432-3

    Article  CAS  Google Scholar 

  34. Mayer P, Smeltzer WW (1972) Kinetics of manganeseo-wustite scale formation on iron-manganese alloys. J Electrochem Soc 119(5):626. https://doi.org/10.1149/1.2404275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No.2022YFB3304800), the Reviving-Liaoning Excellence Plan (XLYC2203186), Science and Technology Special Projects of Liaoning Province, China (Grant No. 2022JH25/10200001), and Postdoctoral Science Foundation of China (Grant No. 2021M701167).

Author information

Authors and Affiliations

Authors

Contributions

Guangming Cao was contributed to investigation, writing—review and editing, and funding acquisition. Wencong Zhao and Wentao Song were contributed to conceptualization, methodology, investigation, writing—original draft and editing. Hengxiang Yu and Silin Li was contributed to investigation. Zhenyu Liu was contributed to conceptualization, methodology, project administration.

Corresponding author

Correspondence to Guangming Cao.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest or competing interests exist.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Zhao, W., Song, W. et al. Influence of Mn–Si elements on the kinetics of oxidative phase transformation under continuous cooling conditions and modeling study. J Mater Sci 59, 9593–9609 (2024). https://doi.org/10.1007/s10853-024-09746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09746-7

Navigation