Skip to main content

Advertisement

Log in

Multi-objective optimization of T-shaped bilateral laser welding parameters based on NSGA-II and MOPSO

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the realm of welding production, optimizing parameters for enhanced quality and efficiency remains a challenge. This study introduces a novel approach using ABAQUS for simulating the thermal–mechanical behavior in T-shaped double-sided welded joints of Q345 steel. Initial simulations were experimentally validated. A range of welding parameters was then established, and the “Unifrnd” function helped sample within this range. This study considers eight welding parameters as input variables for an artificial neural network (ANN), trained to predict residual stress and deformation. Optimization algorithms NSGA-II (non-dominated sorting genetic algorithm-II) and MOPSO (multi-objective particle swarm optimization) algorithm were employed to refine the ANN's outputs. Notably, the Pareto front revealed an optimal balance between minimizing residual stress and deformation. While single optimization achieved up to 5.12% reduction in residual stress and over 50% in deformations, the tri-objective optimization resulted in a more balanced reduction (about 1.88% in residual stress and over 20% in deformations). This highlights the need for parameters weighting in decision-making. The findings demonstrate the effectiveness of integrating ANN with optimization algorithms for welding parameter optimization, with implications for improved welding practices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Data and code availability

Data and code will be available upon request.

References

  1. Pan B, Zhang H, Liu S et al (2023) Dynamic responses of semi-flexible pavements used for the autonomous rail rapid transit. Appl Sci Basel 13:3673. https://doi.org/10.3390/app13063673

    Article  CAS  Google Scholar 

  2. Yuan G, Shu Q, Huang Z et al (2016) An experimental investigation of properties of Q345 steel pipe at elevated temperatures. J Construct Steel Res 118:41–48. https://doi.org/10.1016/j.jcsr.2015.10.022

    Article  Google Scholar 

  3. Rajesh PV, Gupta KK, Čep R et al (2022) Optimizing friction stir welding of dissimilar grades of aluminum alloy using WASPAS. Materials 15:1715. https://doi.org/10.3390/ma15051715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie W, Tu H, Nian K et al (2024) Microstructure and mechanical properties of Flexible Ring Mode laser welded 304 stainless steel. Opt Laser Technol 174:110563. https://doi.org/10.1016/j.optlastec.2024.110563

    Article  CAS  Google Scholar 

  5. Zhao S, Yu G, He X et al (2012) Microstructural and mechanical characteristics of laser welding of Ti6Al4V and lead metal. J Mater Process Technol 212:1520–1527. https://doi.org/10.1016/j.jmatprotec.2012.02.014

    Article  CAS  Google Scholar 

  6. Chen S, Wu Y, Li Y et al (2020) Study on 2219 Al-Cu alloy T-joint used dual laser beam bilateral synchronous welding: parameters optimization based on the simulation of temperature field and residual stress. Opt Laser Technol 132:106481. https://doi.org/10.1016/j.optlastec.2020.106481

    Article  CAS  Google Scholar 

  7. Xia P, Xiong L, Hu Y et al (2023) Effect of laser oscillation and beam incident angle on porosity in double-sided filler welding of 2219 aluminum alloy T joint. Opt Laser Technol 166:109581. https://doi.org/10.1016/j.optlastec.2023.109581

    Article  CAS  Google Scholar 

  8. Zhang H, Wang C, Lin S (2021) Molten pool behaviors in double-sided pulsed gmaw of t-joint: a numerical study. Metals 11:1594. https://doi.org/10.3390/met11101594

    Article  CAS  Google Scholar 

  9. Jie Y, Zhang J-m, Cao S-f et al (2019) Effect of welding sequence on residual stress and deformation of 6061–T6 aluminium alloy automobile component. Trans Nonferrous Met Soc China 29:287–295. https://doi.org/10.1016/S1003-6326(19)64938-1

    Article  Google Scholar 

  10. Knoedel P, Gkatzogiannis S, Ummenhofer T (2017) Practical aspects of welding residual stress simulation. J Constr Steel Res 132:83–96. https://doi.org/10.1016/j.jcsr.2017.01.010

    Article  Google Scholar 

  11. Liu S, Wu Z, Zhou W et al (2023) A review of welding simulation methods for large components. Prog Nat Sci. https://doi.org/10.1016/j.pnsc.2023.12.004

    Article  Google Scholar 

  12. She L, Wei Y, Wang S et al (2018) Welding parameter optimization of electron beam welded GH4169 superalloy based on orthogonal experiment and numerical simulation. Mater Res Exp 6:026567. https://doi.org/10.1088/2053-1591/aaf18f

    Article  CAS  Google Scholar 

  13. Sada SO (2020) The use of multi-objective genetic algorithm (MOGA) in optimizing and predicting weld quality. Cogent Eng. 7:1741310. https://doi.org/10.1080/23311916.2020.1741310

    Article  Google Scholar 

  14. Venkata Rao K, Parimi S, Suvarna Raju L et al (2022) Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Comput. https://doi.org/10.1007/s00500-022-06749-x

    Article  Google Scholar 

  15. Kelly MR, Schmid SR, Adams DC et al (2019) Experimental investigation of linear friction welding of AISI 1020 steel with pre-heating. J Manuf Process 39:26–39. https://doi.org/10.1016/j.jmapro.2019.01.038

    Article  Google Scholar 

  16. Huang Y, Hu Y, Zhang M et al (2022) Multi-objective optimization of process parameters in laser cladding CoCrCuFeNi high-entropy alloy coating. J Therm Spray Technol. 31:1985–2000. https://doi.org/10.1007/s11666-022-01408-x

    Article  CAS  Google Scholar 

  17. Wu C, Wang C, Kim J-W (2022) Welding sequence optimization to reduce welding distortion based on coupled artificial neural network and swarm intelligence algorithm. Eng Appl Artif Intell 114:105142. https://doi.org/10.1016/j.engappai.2022.105142

    Article  Google Scholar 

  18. Ansaripour N, Heidari A, Eftekhari SA (2020) Multi-objective optimization of residual stresses and distortion in submerged arc welding process using Genetic Algorithm and Harmony Search. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci 234:862–871. https://doi.org/10.1177/0954406219885977

    Article  Google Scholar 

  19. Shao Q, Tan F, Li K et al (2021) Multi-objective optimization of MIG welding and preheat parameters for 6061–T6 Al alloy T-joints using artificial neural networks based on FEM. Coatings 11:998. https://doi.org/10.3390/coatings11080998

    Article  CAS  Google Scholar 

  20. Li Y, Xiong M, He Y et al (2022) Multi-objective optimization of laser welding process parameters: The trade-offs between energy consumption and welding quality. Opt Laser Technol 149:107861. https://doi.org/10.1016/j.optlastec.2022.107861

    Article  Google Scholar 

  21. Zhou K, Wang G, Ren B et al (2023) Process optimization of aluminum/steel resistance spot welding based on dynamic resistance analysis. J Mater Sci 58:17908–17929. https://doi.org/10.1007/s10853-023-09157-0

    Article  CAS  Google Scholar 

  22. Tian L, Luo Y, Wang Y et al (2014) Prediction of transverse and angular distortions of gas tungsten arc bead-on-plate welding using artificial neural network. Mater. Des. 54:458–472. https://doi.org/10.1016/j.matdes.2013.08.082

    Article  CAS  Google Scholar 

  23. Joshi M, Ghadai RK, Madhu S et al (2021) Comparison of NSGA-II, MOALO and MODA for multi-objective optimization of micro-machining processes. Materials 14:5109. https://doi.org/10.3390/ma14175109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pereira JLJ, Oliver GA, Francisco MB et al (2022) A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch Comput Method Eng 29:2285–2308. https://doi.org/10.1007/s11831-021-09663-x

    Article  Google Scholar 

  25. Hammad A, Churiaque C, Sánchez-Amaya JM et al (2021) Experimental and numerical investigation of hybrid laser arc welding process and the influence of welding sequence on the manufacture of stiffened flat panels. J Manuf Process 61:527–538. https://doi.org/10.1016/j.jmapro.2020.11.040

    Article  Google Scholar 

  26. Bagheri B, Abbasi M, Abdolahzadeh A et al (2020) Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH). Arch Appl Mech 90:2275–2296. https://doi.org/10.1007/s00419-020-01720-4

    Article  Google Scholar 

  27. Liu F, Tao C, Dong Z et al (2021) Prediction of welding residual stress and deformation in electro-gas welding using artificial neural network. Mater Today Commun 29:102786. https://doi.org/10.1016/j.mtcomm.2021.102786

    Article  CAS  Google Scholar 

  28. Lin R, Feng B, Liu L et al (2023) Effect of welding inclination angle on strain distribution of X80 pipeline steel welded joint in mountain environment. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08805-5

    Article  Google Scholar 

  29. Wang Y, Feng G, Pu X et al (2021) Influence of welding sequence on residual stress distribution and deformation in Q345 steel H-section butt-welded joint. J Mater Res Technol JMRT 13:144–153. https://doi.org/10.1016/j.jmrt.2021.04.059

    Article  CAS  Google Scholar 

  30. Hu L, Luo W, Lu F et al (2024) FE analysis of residual stress and welding deformation of a low-alloy UHS quenched steel fillet joint. J Mater Res Technol JMRT 29:5693–5712. https://doi.org/10.1016/j.jmrt.2024.02.212

    Article  CAS  Google Scholar 

  31. Perić M, Tonković Z, Rodić A et al (2014) Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld. Mater Des 53:1052–1063. https://doi.org/10.1016/j.matdes.2013.08.011

    Article  CAS  Google Scholar 

  32. Gao X, Shao Y, Chen C et al (2023) Investigation on residual stress of EQ56 high strength steel butt weld. Ocean Eng 279:114405. https://doi.org/10.1016/j.oceaneng.2023.114405

    Article  Google Scholar 

  33. Zhao S, Li Y, You H et al (2023) Finite element simulation of multi-pass welding of AA6061-T6 plate-sleeve: effect of different yield strengths of weld and base metals. Trans Indian Inst Met 76:1915–1927. https://doi.org/10.1007/s12666-023-02902-8

    Article  Google Scholar 

  34. Zubairuddin M, Albert S, Vasudevan M et al (2017) Numerical simulation of multi-pass GTA welding of grade 91 steel. J Manuf Process 27:87–97. https://doi.org/10.1016/j.jmapro.2017.04.031

    Article  Google Scholar 

  35. Flint T, Francis J, Smith M et al (2017) Extension of the double-ellipsoidal heat source model to narrow-groove and keyhole weld configurations. J Mater Process Technol 246:123–135. https://doi.org/10.1016/j.jmatprotec.2017.02.002

    Article  Google Scholar 

  36. Sun J, Dilger K (2023) Influence of preheating on residual stresses in ultra-high strength steel welded components. J Mater Res Technol JMRT. https://doi.org/10.1016/j.jmrt.2023.06.181

    Article  Google Scholar 

  37. Kim K-H, Bang H-S, Ro C-S et al (2017) Influence of preheating source on mechanical properties and welding residual stress characteristics in ultra thin ferritic stainless steel hybrid friction stir welded joints. Int J Precis Eng Anuf Gr Tech. 4:393–400. https://doi.org/10.1007/s40684-017-0044-8

    Article  Google Scholar 

  38. Allahkarami M, Hanan JC (2014) Three-dimensional x-ray diffraction detection and visualization. Meas Sci Technol 25:055604. https://doi.org/10.1088/0957-0233/25/5/055604

    Article  CAS  Google Scholar 

  39. Li Y, Lee TH, Banu M et al (2020) An integrated process-performance model of ultrasonic composite welding based on finite element and artificial neural network. J Manuf Process 56:1374–1380. https://doi.org/10.1016/j.jmapro.2020.04.033

    Article  Google Scholar 

  40. Pareek C, Tewari V, Machavaram R (2023) Multi-objective optimization of seeding performance of a pneumatic precision seed metering device using integrated ANN-MOPSO approach. Eng Appl Artif Intell 117:105559. https://doi.org/10.1016/j.engappai.2022.105559

    Article  Google Scholar 

  41. Damavandi MD, Mousavi SM, Safikhani H (2017) Pareto optimal design of swirl cooling chambers with tangential injection using CFD, GMDH-type of ANN and NSGA-II algorithm. Opt Laser Technol 122:102–114. https://doi.org/10.1016/j.ijthermalsci.2017.08.016

    Article  Google Scholar 

  42. Muránsky O, Smith MC, Bendeich PJ, et al. (2012) Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements. Int J Solids Struct 49: 1045–1062. https://doi.org/10.1016/j.ijsolstr.2011.07.006

  43. Zhu K, Mu L, Yu R et al (2023) Probabilistic modelling of surface drift prediction in marine disasters based on the NN–GA and ARMA model. Ocean Eng 281:114804. https://doi.org/10.1016/j.oceaneng.2023.114804

    Article  Google Scholar 

  44. Tazik M, Dehghani MH, Yaghmaeian K et al (2023) 4-Chlorophenol adsorption from water solutions by activated carbon functionalized with amine groups: response surface method and artificial neural networks. Sci Rep 13:7831. https://doi.org/10.1038/s41598-023-35117-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hosseini S, Abdollah-Zadeh A, Naffakh-Moosavy H et al (2019) Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input. J Manuf Process 46:147–158. https://doi.org/10.1016/j.jmapro.2019.09.003

    Article  Google Scholar 

  46. Villani G (2021) A neural network approach to value R&D compound American exchange option. Comput Econ. https://doi.org/10.1007/s10614-021-10150-5

    Article  Google Scholar 

  47. Lou Y, Wu R, Li J et al (2023) Classification-based prediction of network connectivity robustness. Neural Netw 157:136–146. https://doi.org/10.1016/j.neunet.2022.10.013

    Article  PubMed  Google Scholar 

  48. Ajbar W, Parrales A, Cruz-Jacobo U et al (2021) The multivariable inverse artificial neural network combined with GA and PSO to improve the performance of solar parabolic trough collector. Appl Therm Eng 189:116651. https://doi.org/10.1016/j.applthermaleng.2021.116651

    Article  Google Scholar 

  49. RezaeiAshtiani H, Shayanpoor A (2021) Hot deformation characterization of pure aluminum using artificial neural network (ANN) and processing map considering initial grain size. Met Mater Int. https://doi.org/10.1007/s12540-020-00943-y

    Article  Google Scholar 

  50. Dey K, Kalita K, Chakraborty S (2023) Prediction performance analysis of neural network models for an electrical discharge turning process. Int J Interact Des Manuf IJIDeM 17:827–845. https://doi.org/10.1007/s12008-022-01003-y

    Article  Google Scholar 

  51. Behera RR, Ghadai RK, Kalita K et al (2016) Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int J Plast 20:424–450. https://doi.org/10.1007/s12588-016-9163-2

    Article  CAS  Google Scholar 

  52. Qin L, Huang W, Du Y et al (2020) Correction to: genetic algorithm-based inverse design of elastic gridshells. Struct Multidiscip Optim 62:2709–2710. https://doi.org/10.1007/s00158-020-02711-3

    Article  Google Scholar 

  53. El Mrabti I, Touache A, ElHakimi A et al (2021) Springback optimization of deep drawing process based on FEM-ANN-PSO strategy. Struct Multidiscip Optim 64:321–333. https://doi.org/10.1007/s00158-021-02861-y

    Article  Google Scholar 

  54. Wang J, Chen X, Yang L (2022) Reliability-based multi-objective optimization incorporating process–property–performance relationship of double-pulse MIG welding using hybrid optimization strategy. Struct Multidiscip Optim 65:148. https://doi.org/10.1007/s00158-021-03103-x

    Article  Google Scholar 

  55. Darvish Damavandi M, Safikhani H, Yahyaabadi M (2017) Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms. J Braz Soc Mech Sci Eng 39:2319–2329. https://doi.org/10.1007/s40430-016-0698-0

    Article  CAS  Google Scholar 

  56. Hajihassani M, Jahed Armaghani D, Kalatehjari R (2018) Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech Geol Eng 36:705–722. https://doi.org/10.1007/s10706-017-0356-z

    Article  Google Scholar 

  57. Shivaie M, Sepasian MS, Sheikh-El-Eslami MK (2013) Multi-objective transmission expansion planning based on reliability and market considering phase shifter transformers by fuzzy-genetic algorithm. Int Trans Electr Energy Syst 23:1468–1489. https://doi.org/10.1002/etep.1672

    Article  Google Scholar 

  58. Faghiri S, Poureslami P, Partovi Aria H et al (2023) Multi-objective optimization of multiple droplet impacts on a molten PCM using NSGA-II optimizer and artificial neural network. Sci Rep 13:10543. https://doi.org/10.1038/s41598-023-37712-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Jilin Provincial Department of Science and Technology (Grant No. 20170204071GX).

Author information

Authors and Affiliations

Authors

Contributions

Yunjie Tan contributed to writing—original draft, conceptualization, investigation, software, validation, and methodology. Guoren Zhu and Bosen Chai contributed to methodology, validation, investigation, and revision. Fengjun Tian contributed to validation, investigation, and revision. Zhonghao Zhao contributed to software, validation, investigation, and revision.

Corresponding author

Correspondence to Bosen Chai.

Ethics declarations

Conflicts of interest

The authors declare that they have no financial or personal relationships that could have influenced the work presented in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 10 KB)

Supplementary file 2 (XLSX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhu, G., Tian, F. et al. Multi-objective optimization of T-shaped bilateral laser welding parameters based on NSGA-II and MOPSO. J Mater Sci 59, 9547–9573 (2024). https://doi.org/10.1007/s10853-024-09727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09727-w

Navigation