Skip to main content
Log in

The intervention of nanotechnology in food packaging: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The introduction of nanotechnology in the food industry has created several opportunities for this sector. Several recent advancements in food packaging use nanotechnology to enhance the function and quality of the packaging materials. This review focuses on how various nanomaterials used in different packaging materials help in maintaining the quality and shelf life of the food product. Several applications of nanomaterials in food packaging such as the use of silver nanoparticles as powerful antibacterial agents, polymer/clay nanocomposites as high barrier packaging materials, and nanosensors were mentioned here. The advances in food nanopackaging, including improved, active, smart, and bio-based packaging, were also discussed. The bio-based packaging offers a substitute for the most widely used non-degradable polymer substances. This review paper aims to highlight some of the most recent technological developments with the use of nanotechnology in the food industry and to indicate some of the many potential future research directions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol Appl Sci 4(5):345–357

    CAS  Google Scholar 

  2. Kuswandi B (2016) Nanotechnology in food packaging. Nanosci Food Agric 1:151–183

    Article  Google Scholar 

  3. Primožič M, Knez Ž, Leitgeb M (2021) (Bio) nanotechnology in food science—food packaging. Nanomaterials 11(2):292

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Proc 8:109–113

    Article  CAS  Google Scholar 

  5. Chaudhary Q, Castle L, Watkins R (eds) (2010) Nanotechnologies in Food. Royal Society of Chemistry Publishers, Cambridge, UK

    Google Scholar 

  6. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008). Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

  7. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610

    Article  CAS  Google Scholar 

  8. Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater 30(12):5180–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70

    Article  Google Scholar 

  10. Ibrahim S, Abbas HA, Sultan M, Aziz MA (2019) Preparation and characterization of nano-sized Sr1–x AgxTiO3 system as antimicrobial nanomaterial coating for paper base packaging materials. J Packag Technol Res 3(1):67–75

    Article  Google Scholar 

  11. Kumar S, Mukherjee A, Dutta J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196–209

    Article  CAS  Google Scholar 

  12. Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44(2):161–181

    Article  CAS  PubMed  Google Scholar 

  13. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40(2):149–167

    Article  CAS  Google Scholar 

  14. Smolander M, Chaudhry Q (2010) Nanotechnologies in food packaging. Nanotechnol Food 14(2010):86e–101e

    Article  Google Scholar 

  15. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78

    Article  CAS  Google Scholar 

  16. Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emir J Food Agric 25(1):10–19

    Article  Google Scholar 

  17. Ramos ÓL, Pereira RN, Cerqueira MA, Martins JR, Teixeira JA, Malcata FX, Vicente AA (2018) Bio-based nanocomposites for food packaging and their effect in food quality and safety. Food packaging and preservation. Academic Press, Cambridge, pp 271–306

    Google Scholar 

  18. Bakhy EA, Zidan NS, Aboul-Anean HED (2018) The effect of nano materials on edible coating and films’ improvement. Int J Pharm Res Allied Sci 7(3):20–41

    Google Scholar 

  19. Bhagath YB, Manjula K (2019) Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. Int Food Res J 26(2):377–392

    CAS  Google Scholar 

  20. Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: a review. J Mater Sci 54(19):12290–12318

    Article  CAS  ADS  Google Scholar 

  21. Grenho L, Salgado CL, Fernandes MH, Monteiro FJ, Ferraz MP (2015) Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study. Nanotechnology 26(31):315101

    Article  CAS  PubMed  ADS  Google Scholar 

  22. La DD, Nguyen-Tri P, Le KH, Nguyen PT, Nguyen MD, Vo AT, Nguyen MT, Chang SW, Tran LD, Chung WJ, Nguyen DD (2021) Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Prog Org Coat 151:106057

    Article  CAS  Google Scholar 

  23. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD (2020) Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: What is the fundamental factor that determines photoactivity in ZnO? J Hazard Mater 381:120958

    Article  CAS  PubMed  Google Scholar 

  24. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80(5):R910–R923

    Article  CAS  PubMed  Google Scholar 

  25. Abdel Baky E, El-Duma Abdullah Z, El Din Aboul-Anean H (2020) Application of nano edible films to improve some dates in Saudi Arabia. Int J Pharm Res Allied Sci 9(2):69–84

    CAS  Google Scholar 

  26. Al-Nabulsi A, Osaili T, Sawalha A, Olaimat AN, Albiss BA, Mehyar G, Ayyash M, Holley R (2020) Antimicrobial activity of chitosan coating containing ZnO nanoparticles against E. coli O157: H7 on the surface of white brined cheese. Int J Food Microbiol 334:108838

    Article  CAS  PubMed  Google Scholar 

  27. Kuswandi B, Moradi M (2019) Improvement of food packaging based on functional nanomaterial. In: Nanotechnology: applications in energy, drug and food, p 309–344

  28. Acevedo-Fani A, Salvia-Trujillo L, Soliva-Fortuny R, Martín-Belloso O (2017) Layer-by-layer assembly of food-grade alginate/chitosan nanolaminates: formation and physicochemical characterization. Food Biophys 12(3):299–308

    Article  Google Scholar 

  29. Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134

    Article  Google Scholar 

  30. Lin D, Yang Y, Wang J, Yan W, Wu Z, Chen H, Zhang Q, Wu D, Qin W, Tu Z (2020) Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int J of Biol Macromol 154:123–133

    Article  CAS  Google Scholar 

  31. Chawla V, Ruoho M, Weber M, Chaaya AA, Taylor AA, Charmette C, Miele P, Bechelany M, Michler J, Utke I (2019) Fracture mechanics and oxygen gas barrier properties of Al2O3/ZnO nanolaminates on PET deposited by atomic layer deposition. Nanomaterials 9(1):88

    Article  PubMed  PubMed Central  Google Scholar 

  32. Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42(3–4):545–552

    Article  CAS  ADS  Google Scholar 

  33. Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohyd Polym 199:415–425

    Article  Google Scholar 

  34. Bumbudsanpharoke N, Ko S (2019) Nanoclays in food and beverage packaging. J Nanomater 2019:1–13

    Article  Google Scholar 

  35. Voon HC, Bhat R, Easa AM, Liong MT, Karim AA (2012) Effect of addition of halloysitenanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food Bioprocess Technol 5(5):1766–1774

    Article  CAS  Google Scholar 

  36. Zare Y, Garmabi H, Sharif F (2011) Optimization of mechanical properties of PP/Nanoclay/CaCO3 ternary nanocomposite using response surface methodology. J Appl Polym Sci 122(5):3188–3200

    Article  CAS  Google Scholar 

  37. Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: effects of nanoclay loading. J Appl Polym Sci 131(11):40289

    Article  Google Scholar 

  38. Coronado Jorge MF, Alexandre E, Caicedo Flaker CH, Bittante AMQB, Sobral PJDA (2015) Biodegradable films based on gelatin and montmorillonite produced by spreading. Int J Polym Sci 2015:806791

    Article  Google Scholar 

  39. Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohyd Polym 64(4):516–523

    Article  CAS  Google Scholar 

  40. Abdurrahim I (2019) Water sorption, antimicrobial activity, and thermal and mechanical properties of chitosan/clay/glycerol nanocomposite films. Heliyon 5(8):e02342

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sani MA, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM (2022) Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 300:102593

    Article  Google Scholar 

  42. Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Instrum Food Qual Saf 5(3):137–146

    Article  Google Scholar 

  43. Fuertes G, Soto I, Vargas M, Valencia A, Sabattin J, Carrasco R (2016) Nanosensors for a monitoring system in intelligent and active packaging. J Sens 2016:7980476

    Google Scholar 

  44. Baeumner A (2004) Nanosensors identify pathogens in food. Food Technol 58:51–55

    CAS  Google Scholar 

  45. Paul S (2015) Nanotechnology and neutraceuticals. Int J Nanomater Nanotechnol Nanomed 2:009–012

    Article  Google Scholar 

  46. Kuswandi B, Restyana A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1):184–189

    Article  CAS  Google Scholar 

  47. Kumar S (2010) Nanotechnology and animal health. Veterinary. World 3:567

    Google Scholar 

  48. Huang S-W, Satué-Gracia MT, Frankel EN, German JB (1999) Effect of lactoferrin on oxidative stability of corn oil emulsions and liposomes. J Agric Food Chem 47(4):1356–1361

    Article  CAS  PubMed  Google Scholar 

  49. Arshak K, Moore E, Cunniffe C, Nicholson M, Arshak A (2007) Preparation and characterisation of ZnFe2O4/ZnO polymer nanocomposite sensors for the detection of alcohol vapours. Superlattices Microstruct 42(1–6):479–488

    Article  CAS  ADS  Google Scholar 

  50. Galdikas A, Mironas A, Senulien D, Strazdien V, Šetkus A, Zelenin D (2000) Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sens Actuators, B Chem 69(3):258–265

    Article  CAS  Google Scholar 

  51. Sonawane SK, Arya SS, LeBlanc JG, Jha N (2014) Use of nanomaterials in the detection of food contaminants. Eur J Food Res Rev 4(4):301

    Google Scholar 

  52. Abad E, Palacio F, Nuin M, De Zarate AG, Juarros A, Gómez JM, Marco S (2009) RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Eng 93(4):394–399

    Article  Google Scholar 

  53. Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J (2021) Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 20(3):2428–2454

    Article  PubMed  Google Scholar 

  54. Becerril R, Nerín C, Silva F (2020) Encapsulation systems for antimicrobial food packaging components: an update. Molecules 25(5):1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xing Y, Li X, Zhang L, Xu Q, Che Z, Li W, Bai Y, Li K (2012) Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog Org Coat 73(2–3):219–224

    Article  CAS  Google Scholar 

  56. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46(9):1947–1955

    Article  CAS  Google Scholar 

  57. Kwak H-S (ed) (2014) Nano- and microencapsulation for foods. Wiley, Chichester, UK

    Google Scholar 

  58. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11(4):742–748

    Article  CAS  Google Scholar 

  59. Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95

    Article  CAS  Google Scholar 

  60. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    Article  CAS  Google Scholar 

  61. Valdés A, Mellinas AC, Ramos M, Burgos N, Jiménez A, Garrigós MDC (2015) Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv 5(50):40324–40335

    Article  ADS  Google Scholar 

  62. Ahmed J, Mulla M, Arfat YA, Bher A, Jacob H, Auras R (2018) Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications. LWT 93:329–338

    Article  CAS  Google Scholar 

  63. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphusjujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552

    Article  CAS  Google Scholar 

  64. Mbhele ZH, Salemane MG, Van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15(26):5019–5024

    Article  CAS  Google Scholar 

  65. Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252(12):4154–4160

    Article  CAS  ADS  Google Scholar 

  66. Xiao-e L, Green AN, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162(2–3):253–259

    Article  Google Scholar 

  67. Yu H, Huang Y, Huang Q (2010) Synthesis and characterization of novel antimicrobial emulsifiers from ε-polylysine. J Agric Food Chem 58(2):1290–1295

    Article  CAS  PubMed  Google Scholar 

  68. Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces 4(12):6609–6617

    Article  CAS  PubMed  Google Scholar 

  69. Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Addit Contam Part A 28(12):1758–1762

    CAS  Google Scholar 

  70. Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJ, Hu M, Wang Y (2020) Rethinking nano-TiO2 safety: overview of toxic effects in humans and aquatic animals. Small 16(36):2002019

    Article  CAS  Google Scholar 

  71. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  72. Youssef AM, Assem FM, El-Sayed SM, Salama H, Abd El-Salam MH (2017) Utilization of edible films and coatings as packaging materials for preservation of cheeses. J Packag Technol Res 1(2):87–99

    Article  Google Scholar 

  73. Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A (2017) Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol 95:306–313

    Article  CAS  PubMed  Google Scholar 

  74. Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym-Plast Technol Eng 53(3):312–318

    Article  CAS  Google Scholar 

  75. Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids. Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915

    Article  CAS  ADS  Google Scholar 

  76. Noorbakhsh-Soltani SM, Zerafat MM, Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohyd Polym 189:48–55

    Article  CAS  Google Scholar 

  77. Farooq A, Patoary MK, Zhang M, Mussana H, Li M, Naeem MA, Mushtaq M, Farooq A, Liu L (2020) Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 154:1050–1073

    Article  CAS  PubMed  Google Scholar 

  78. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  Google Scholar 

  79. Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohyd Polym 89(1):146–151

    Article  CAS  Google Scholar 

  80. Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173

    Article  CAS  PubMed  Google Scholar 

  81. Das AK, Islam MN, Ashaduzzaman M, Nazhad MM (2020) Nanocellulose: its applications, consequences and challenges in papermaking. J Packag Technol Res 4:1–8

    Article  Google Scholar 

  82. Gorrasi G, Vertuccio L (2016) Evaluation of zein/halloysite nano-containers as reservoirs of active molecules for packaging applications: preparation and analysis of physical properties. J Cereal Sci 70:66–71

    Article  CAS  Google Scholar 

  83. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crops Prod 130:450–458

    Article  CAS  Google Scholar 

  84. Panchapakesan C, Sozer N, Dogan H, Huang Q, Kokini JL (2012) Effect of different fractions of zein on the mechanical and phase properties of zein films at nano-scale. J Cereal Sci 55(2):174–182

    Article  CAS  Google Scholar 

  85. Vahedikia N, Garavand F, Tajeddin B, Cacciotti I, Jafari SM, Omidi T, Zahedi Z (2019) Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf B: Biointerfaces 177:25–32

    Article  CAS  PubMed  Google Scholar 

  86. Li S, Zhao S, Qiang S, Chen G, Chen Y, Chen Y (2018) A novel zein/poly (propylene carbonate)/nano-TiO2 composite films with enhanced photocatalytic and antibacterial activity. Process Biochem 70:198–205

    Article  CAS  Google Scholar 

  87. Kashiri M, Maghsoudlo Y, Khomeiri M (2017) Incorporating Zataria multiflora Boiss. essential oil and sodium bentonite nano-clay open a new perspective to use zein films as bioactive packaging materials. Food Sci Technol Int 23(7):582–596

    Article  Google Scholar 

  88. Arcan I, Yemenicioğlu A (2011) Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res Int 44(2):550–556

    Article  CAS  Google Scholar 

  89. Tawakkal IS, Cran MJ, Miltz J, Bigger SW (2014) A review of poly (lactic acid)-based materials for antimicrobial packaging. J Food Sci 79(8):R1477–R1490

    Article  CAS  PubMed  Google Scholar 

  90. Guo M, Jin TZ, Yang R (2014) Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technol 7(11):3293–3307

    Article  CAS  Google Scholar 

  91. Swaroop C, Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729–736

    Article  CAS  PubMed  Google Scholar 

  92. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155

    Article  CAS  PubMed  Google Scholar 

  93. Li W, Zhang C, Chi H, Li L, Lan T, Han P, Chen H, Qin Y (2017) Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules 22(7):1170

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chu Z, Zhao T, Li L, Fan J, Qin Y (2017) Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials 10(6):659

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  95. Balaguer MP, Aliaga C, Fito C, Hortal M (2016) Compostability assessment of nano-reinforced poly (lactic acid) films. Waste Manage 48:143–155

    Article  CAS  Google Scholar 

  96. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM, (2012) Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87(2):1596–1605

    Article  CAS  Google Scholar 

  97. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141

    Article  CAS  Google Scholar 

  98. Lu W, Cui R, Zhu B, Qin Y, Cheng G, Li L, Yuan M (2021) Influence of clove essential oil immobilized in mesoporous silica nanoparticles on the functional properties of poly (lactic acid) biocomposite food packaging film. J Market Res 11:1152–1161

    CAS  Google Scholar 

  99. Bhavaniramya S, Vishnupriya S, Baskaran D (2021) Significance of bacterial polyhydroxyalkanoates in rhizosphere. In: Vaishnav A, Choudhary DK (eds) Microbial polymers (pp 235–249). Springer, Singapore

    Chapter  Google Scholar 

  100. Masood F (2017) Polyhydroxyalkanoates in the food packaging industry. In: Grumezescu AM, Oprea AE (eds) Nanotechnology applications in food. Academic Press, pp 153–177

    Chapter  Google Scholar 

  101. Khosravi-Darani K, Bucci DZ (2015) Application of poly (hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Eng Q 29(2):275–285

    Article  CAS  Google Scholar 

  102. Sahraee S, Ghanbarzadeh B, Milani JM, Hamishehkar H (2017) Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food Bioprocess Technol 10:1441–1453

    Article  CAS  Google Scholar 

  103. Zhu Z, Zhang Y, Shang Y, Wen Y (2019) Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas. Food Bioprocess Technol 12:281–287

    Article  CAS  Google Scholar 

  104. Siripatrawan U, Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll 84:125–134

    Article  CAS  Google Scholar 

  105. Díez-Pascual AM, Diez-Vicente AL (2014) ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6(12):9822–9834

    Article  PubMed  Google Scholar 

  106. Pirsa S, Shamusi T (2019) Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Mater Sci Eng C 102:798–809

    Article  CAS  Google Scholar 

  107. Gallocchio F, Cibin V, Biancotto G, Roccato A, Muzzolon O, Carmen L, Simone B, Manodori L, Fabrizi A, Patuzzi I, Ricci A (2016) Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Addit Contam Part A 33(6):1063–1071

    Article  CAS  Google Scholar 

  108. Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, Liu Y, Zhao Y, Wang H (2013) Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 9(9–10):1765–1774

    Article  CAS  PubMed  ADS  Google Scholar 

  109. Su QZ, Lin QB, Chen CF, Wu LB, Wang ZW (2017) Effect of organic additives on silver release from nanosilver–polyethylene composite films to acidic food simulant. Food Chem 228:560–566

    Article  CAS  PubMed  Google Scholar 

  110. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B (2017) Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv Coll Interface Sci 249:37–52

    Article  Google Scholar 

  111. Wagner A, Eldawud R, White A, Agarwal S, Stueckle TA, Sierros KA, Rojanasakul Y, Gupta RK, Dinu CZ (2017) Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochimica et Biophsica Acta (BBA)-General Subjects 1:3406–3415

    Article  Google Scholar 

  112. Jokar M, Pedersen GA, Loeschner K (2017) Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam Part A 34(3):434–450

    Article  CAS  Google Scholar 

  113. Wagner A, White AP, Stueckle TA, Banerjee D, Sierros KA, Rojanasakul Y, Agarwal S, Gupta RK, Dinu CZ (2017) Early assessment and correlations of nanoclay’s toxicity to their physical and chemical properties. ACS Appl Mater Interfaces 9(37):32323–32335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Paidari S, Tahergorabi R, Anari ES, Nafchi AM, Zamindar N, Goli M (2021) Migration of various nanoparticles into food samples: a review. Foods 10(9):2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shatkin JA, Kim B (2015) Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environ Sci Nano 2(5):477–499

    Article  CAS  Google Scholar 

  116. Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, Gontard N (2018) The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front Nutr 5:121

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cerqueira MAPR, Lagaron JM, Castro LMP, de Oliveira Soares AAM (eds) (2018) Nanomaterials for food packaging: materials, processing technologies, and safety issues. Elsevier, Amsterdam

    Google Scholar 

  118. Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colorimetric oxygen indicator. Sens Actuators B Chem 136(2):344–349

    Article  CAS  Google Scholar 

  119. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Institution of Eminence (IoE) scheme, Banaras Hindu University, Varanasi (U.P.), India, for financial support under the Incentive to Seed Grant under IoE Scheme (Dev. Scheme No. 6031 & PFMS Scheme No. 3254).

Author information

Authors and Affiliations

Authors

Contributions

SP contributed to conceptualization, methodology, analysis, investigation, writing review, and editing. MK contributed to conceptualization, analysis, investigation, writing review visualization, and editing. AKC contributed to conceptualization, investigation, analysis, and editing.

Corresponding author

Correspondence to Anil Kumar Chauhan.

Ethics declarations

Conflict of Interest

The authors show no conflict of interest.

Ethical Approval

No animal or human tissue experiments were carried out in this review.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Kumari, M. & Chauhan, A.K. The intervention of nanotechnology in food packaging: a review. J Mater Sci 59, 2585–2601 (2024). https://doi.org/10.1007/s10853-024-09360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09360-7

Navigation