Photoluminescence and UV photosensitivity of few-layered MoS2 nanosheets synthesized under different hydrothermal growth times


MoS2 flower-like microspheres composed of 2D nanosheets were prepared using the simple and cost-effective method of hydrothermal. The effects of hydrothermal process time variations on the structural, morphological, elemental composition, electrical, and optical properties of MoS2 nanopowders were investigated. X-ray diffraction patterns of all samples exhibited two main peaks at 33.4°–58.8° which were attributed to the (100) and (110) peaks of 2H-MoS2. The appearance of two first-order Raman active modes of MoS2, namely E12g and A1g at 378, and 402 cm−1, respectively, confirmed the formation of MoS2. SEM images showed that every MoS2 flower-like microspheres have composed of very thin nanosheets with a mean diameter of about 35 nm. HRTEM images clearly show that the MoS2 nanosheets have been formed by 10–20 layers that partially stand perpendicularly on the surface of the MoS2 microspheres. The bandgap energy of samples has increased from 1.26 to 1.62 eV by increasing the hydrothermal growth time from 2 to 24 h, respectively. The increase in the bandgap of samples was attributed to the reduced number of layers. Samples prepared at higher growth times of 8, 12, and 24 h show a broad photoluminescence peak, assigned as the I-exciton. This peak shifts to lower energies and becomes less prominent with the increasing number of layers. Temperature-dependent Hall effect measurements were performed and n-type conductivity was confirmed and electrical parameters were extracted. Samples were exposed to 230 nm UV light, and their photosensitivity was recorded. The sample prepared at the highest growth time of 24 h showed the highest UV response, with the photocurrent of about 165 µA under 3 V bias voltage.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.


  1. 1

    Gomes FOV, Pokle A, Marinkovic M, Balster T, Canavan M, Fleischer K et al (2018) Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films 645:38–44

    CAS  Google Scholar 

  2. 2

    Rao R, Islam AE, Campbell PM, Vogel EM, Maruyama B (2017) In situ thermal oxidation kinetics in few layer MoS2. 2D Materials 4:025058

    Google Scholar 

  3. 3

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P, Shirodkar S et al (2016) Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Mater 3:015005

    Google Scholar 

  4. 4

    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    CAS  Google Scholar 

  5. 5

    Lee JH, Gul HZ, Kim H, Moon BH, Adhikari S, Kim JH et al (2017) Photocurrent switching of monolayer MoS2 using a metal-insulator transition. Nano Lett 17:673–678

    CAS  Google Scholar 

  6. 6

    Kim T, Mun J, Park H, Joung D, Diware M, Won C et al (2017) Wafer-scale production of highly uniform two-dimensional MoS2 by metal-organic chemical vapor deposition. Nanotechnology 28:18LT01

    Google Scholar 

  7. 7

    Singh E, Kim KS, Yeom GY, Nalwa HS (2017) Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl Mater Interfaces 9:3223–3245

    CAS  Google Scholar 

  8. 8

    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700

    CAS  Google Scholar 

  9. 9

    He Z, Que W (2016) Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl Mater Today 3:23–56

    Google Scholar 

  10. 10

    Fan X, Li W, Fu H, Zhu M, Wang L, Cai Z et al (2017) Probing the function of solid nanoparticle structure under boundary lubrication. ACS Sustain Chem Engin 5:4223–4233

    CAS  Google Scholar 

  11. 11

    Pi Y, Li Z, Xu D, Liu J, Li Y, Zhang F et al (2017) 1T-Phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain Chem Eng 5:5175–5182

    CAS  Google Scholar 

  12. 12

    Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y et al (2016) MoS2 Nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10:8526–8535

    CAS  Google Scholar 

  13. 13

    McGuire FA, Lin Y-C, Price K, Rayner GB, Khandelwal S, Salahuddin S et al (2017) Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett 17:4801–4806

    CAS  Google Scholar 

  14. 14

    Geng X, Zhang Y, Han Y, Li J, Yang L, Benamara M et al (2017) Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett 17:1825–1832

    CAS  Google Scholar 

  15. 15

    Wu D, Lou Z, Wang Y, Xu T, Shi Z, Xu J et al (2017) Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor. Nanotechnology 28:435503

    Google Scholar 

  16. 16

    Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A (2019) MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13:3196–3205

    CAS  Google Scholar 

  17. 17

    Lee SK, Chu D, Pak SW, Kim EK (2017) Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method. Nanotechnology 28:195703

    Google Scholar 

  18. 18

    Chen T, Zou H, Wu X, Liu C, Situ B, Zheng L et al (2018) Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces 10:12453–12462

    CAS  Google Scholar 

  19. 19

    Peng J, Weng J (2017) Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosens Bioelectron 89:652–658

    CAS  Google Scholar 

  20. 20

    Lu C, Liu Y, Ying Y, Liu J (2017) Comparison of MOS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 33:630–637

    Google Scholar 

  21. 21

    Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8:31567–31573

    CAS  Google Scholar 

  22. 22

    Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z et al (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10:11000–11011

    CAS  Google Scholar 

  23. 23

    Placidi M, Dimitrievska M, Izquierdo-Roca V, Fontané X, Castellanos-Gomez A, Pérez-Tomás A et al (2015) Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers. 2D Mater 2:035006

    Google Scholar 

  24. 24

    Yadav S, Chaudhary P, Uttam K, Varma A, Vashistha M, Yadav B (2019) Facile synthesis of molybdenum disulfide (MoS2) quantum dots and its application in humidity sensing. Nanotechnology 30:295501

    CAS  Google Scholar 

  25. 25

    Li Z, Chen J, Dhall R, Cronin SB (2016) Highly efficient, high speed vertical photodiodes based on few-layer MoS2. 2D Mater 4:015004

    Google Scholar 

  26. 26

    Ishihara S, Hibino Y, Sawamoto N, Suda K, Ohashi T, Matsuura K et al (2016) Improving crystalline quality of sputtering-deposited MoS2 thin film by postdeposition sulfurization annealing using (t-C4H9) 2S2. Jpn J Appl Phys 55:0EJ47

    Google Scholar 

  27. 27

    Dam S, Thakur A, Amarendra G, Hussain S (2019) Synthesis and characterisation of MoS2 thin films by electron beam evaporation. Thin Solid Films 681:78–85

    CAS  Google Scholar 

  28. 28

    Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A (2019) MoS2-Based optoelectronic gas sensor with sub-part-per-billion limit of NO2 gas detection. ACS Nano 13(3):3196–3205

    CAS  Google Scholar 

  29. 29

    George AS, Mutlu Z, Ionescu R, Wu RJ, Jeong JS, Bay HH et al (2014) Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Adv Func Mater 24:7461–7466

    CAS  Google Scholar 

  30. 30

    Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403

    Google Scholar 

  31. 31

    Ou H, Xu S, Xiao Z, Fu H, Luo Y 2019 Preparation and Photoelectric Properties of MoS2 Microspheres, In: IOP Conference series: materials science and engineering, IOP Publishing, pp 012072.

  32. 32

    Manuja M, Krishnan VS, Jose G 2018 Molybdenum Disulphide Nanoparticles Synthesis Using a Low Temperature Hydrothermal Method and Characterization, In: IOP conference series: materials science and engineering, IOP Publishing, pp 012015.

  33. 33

    Singh MK, Chettri P, Tripathi A, Tiwari A, Mukherjee B, Mandal R (2018) Defect mediated magnetic transitions in Fe and Mn doped MoS2. Phys Chem Chem Phys 20:15817–15823

    CAS  Google Scholar 

  34. 34

    Zhang X, Huang X, Xue M, Ye X, Lei W, Tang H et al (2015) Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater Lett 148:67–70

    CAS  Google Scholar 

  35. 35

    Sen UK, Mitra S (2013) High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl Mater Interfaces 5:1240–1247

    CAS  Google Scholar 

  36. 36

    Zhang J, Wang Y, Cui J, Wu J, Li Y, Zhu T et al (2019) Water-soluble defect-rich MoS2 ultrathin nanosheets for enhanced hydrogen evolution. J Phys Chem Lett 10(2):3282–3289

    CAS  Google Scholar 

  37. 37

    Yang L, Zhang J, Feng C, Xu G, Xie C, Yuan X et al (2019) MoS2 nanosheet/MoS2 flake homostructures for efficient electrocatalytic hydrogen evolution. Mater Res Express 6:085005

    CAS  Google Scholar 

  38. 38

    Santhosha AL, Nayak PK, Pollok K, Langenhorst F, Adelhelm P (2019) Exfoliated MoS2 as electrode for all solid state rechargeable lithium-ion batteries. J Phys Chem C 123(19):12126–12134

    CAS  Google Scholar 

  39. 39

    Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y et al (2016) Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Adv 6:71534–71542

    CAS  Google Scholar 

  40. 40

    Li L, Qin Z, Ries L, Hong S, Michel T, Yang J et al (2019) Role of Sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets towards the evolution of hydrogen. ACS Nano 13(6):6824–6834

    CAS  Google Scholar 

  41. 41

    Kumari S, Gusain R, Kumar N, Khatri OP (2016) PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J Ind Eng Chem 42:87–94

    CAS  Google Scholar 

  42. 42

    Peng Y-Z, Song Y, Xie X-Q, Li Y, Qian Z-H, Bai R (2016) Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method. Chin Phys B 25:058104

    Google Scholar 

  43. 43

    Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl Mater Interfaces 6:14644–14652

    CAS  Google Scholar 

  44. 44

    Mousavi-Zadeh SH, Rahmani MB (2016) Thin film growth and Zn doping of h-MoO3 hexagonal rods by hydrothermal technique. Mod Phys Lett B 30:7

    Google Scholar 

  45. 45

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W et al (2017) Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun 8:1–10

    Google Scholar 

  46. 46

    Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y et al (2017) Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chin J Catal 38:597–606

    CAS  Google Scholar 

  47. 47

    Dam S, Thakur A, Dey R, Hussain S (2020) Synthesis of preferentially oriented <002> MoS2 thin films as rectifying p–n junction. Materialia 11:100688

    CAS  Google Scholar 

  48. 48

    Khatri R, Puri NK (2020) Electrochemical study of hydrothermally synthesised reduced MoS2 layered nanosheets. Vacuum 175:109250

    CAS  Google Scholar 

  49. 49

    Farzi-kahkesh S, Rahmani MB, Fattah A (2020) Growth of novel α-MoO3 hierarchical nanostructured thin films for ethanol sensing. Mater Sci Semicond Process 120:105263

    CAS  Google Scholar 

  50. 50

    Ghaleghafi E, Rahmani MB (2019) Facile synthesis, characterization, and photoluminescence of lamellar α-MoO3 thin films. Solid State Sci 94:85–91

    CAS  Google Scholar 

  51. 51

    Adilla SJ, Nurfani E, Kurniawan R, Satrya CD., Darma Y 2017 Structural and optical properties analysis of MoS2 nanoflakes on quartz substrate as prepared by mechanical exfoliation, In: journal of physics: conference series, IOP Publishing, pp 012036.

  52. 52

    Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Fun Mater 22:1385–1390

    CAS  Google Scholar 

  53. 53

    Wang ZM (2013) MoS2: materials, physics, and devices. Springer

    Google Scholar 

  54. 54

    Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T et al (2017) Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications. Nanotechnology 28:084001

    Google Scholar 

  55. 55

    Yang C, Wang B, Xie Y, Zheng Y, Jin C (2019) Deriving MoS2 nanoribbons from their flakes by chemical vapor deposition. Nanotechnology 30:255602

    CAS  Google Scholar 

  56. 56

    Zhu Y, Yang J, Zhang S, Mokhtar S, Pei J, Wang X et al (2016) Strongly enhanced photoluminescence in nanostructured monolayer MoS2 by chemical vapor deposition. Nanotechnology 27:135706

    Google Scholar 

  57. 57

    Michail A, Parthenios J, Anestopoulos D, Galiotis C, Christian M, Ortolani L et al (2018) Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS2 and clarification of the role of growth-induced strain. 2D Mater 5:035035

    Google Scholar 

  58. 58

    Akhavan Mavardiani A, Rahmani MB (2020) Effects of spray pyrolysis deposition parameters on morphological, optical and structural properties of WO3 nanostructured thin films. Surf Rev Lett 27:1950203

    Google Scholar 

  59. 59

    Munkhbayar G, Palleschi S, Perrozzi F, Nardone M, Davaasambuu J, Ottaviano L (2018) A study of exfoliated molybdenum disulfide (MOS2) based on Raman and photoluminescence spectroscopy. Trans Tech Publ, Solid State Phenomena, pp 40–46

    Google Scholar 

  60. 60

    Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M, Maultzsch J (2014) Photoluminescence of freestanding single-and few-layer MoS2. Phys Rev B 89:125406

    Google Scholar 

  61. 61

    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Google Scholar 

  62. 62

    Shen W-C, Chen R-S, Huang Y-S (2016) Photoconductivities in MoS2 nanoflake photoconductors. Nanoscale Res Lett 11:124

    Google Scholar 

  63. 63

    Chahrour KM, Ahmed NM, Hashim M, Elfadill NG, Bououdina M (2016) Self-assembly of aligned CuO nanorod arrays using nanoporous anodic alumina template by electrodeposition on Si substrate for IR photodetectors. Sens Actuators, A 239:209–219

    CAS  Google Scholar 

  64. 64

    Shaikh SK, Inamdar SI, Ganbavle VV, Rajpure KY (2016) Chemical bath deposited ZnO thin film based UV photoconductive detector. J Alloy Compd 664:242–249

    CAS  Google Scholar 

  65. 65

    Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV et al (2017) High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 12:223

    CAS  Google Scholar 

  66. 66

    Wang SY, Ko TS, Huang CC, Huang YS (2014) Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn J Appl Phys.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammad Bagher Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Avinash Dongare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaleghafi, E., Rahmani, M.B. & Wei, ZH. Photoluminescence and UV photosensitivity of few-layered MoS2 nanosheets synthesized under different hydrothermal growth times. J Mater Sci 56, 11749–11768 (2021).

Download citation