A PA/O-NGO/PPS sandwich composite membrane prepared via multi-step interfacial polymerization for desalination


In view of the disadvantages of concentration polarization and trade-off effects in the application of membrane in desalination field, oxide-nano graphene oxide/polyamide (O-NGO/PA) loose intermediate layer and PA ultra-thin dense layer were introduced to fabricate PA/O-NGO/polyphenylene sulfide composite membrane with sandwich structure via multi-step interfacial polymerization (MS-IP) method. The selective permeation mechanism of ultrathin layer produced by different aqueous monomers (PIP and MPD) was studied, the effect of its physicochemical structure on the relief of concentration polarization phenomenon and the breakthrough of trade-off effect was analyzed. The ultra-thin and dense PA layer mainly played the role of interception and shortened the water molecular penetration path. In the retention test of metal salt solution, compared with the rough surface, it was found that the smooth surface was more conducive to the diffusion of intercepted metal ions into the feed solution, thus alleviating the concentration polarization phenomenon.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1

    Haddeland I, Heinke J, Biemans H et al (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci 111:3251–3256. https://doi.org/10.1073/pnas.1222475110

    CAS  Article  Google Scholar 

  2. 2

    Liu T, Yang B, Graham N, Yu WZ, Sun KN (2017) Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment. J Membr Sci 542:31–40. https://doi.org/10.1016/j.memsci.2017.07.061

    CAS  Article  Google Scholar 

  3. 3

    Liu TY, Yuan HG, Li Q et al (2015) Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity. ACS Nano 9:7488–7496. https://doi.org/10.1021/acsnano.5b02598

    CAS  Article  Google Scholar 

  4. 4

    Gao Q, Xu J, Bu XH (2019) Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordin Chem Rev 378:17–31. https://doi.org/10.1016/j.ccr.2018.03.015

    CAS  Article  Google Scholar 

  5. 5

    Gao Y, Su KM, Li ZH, Cheng BW (2018) Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl) ethane. Chem Eng J 352:10–19. https://doi.org/10.1016/j.cej.2018.06.180

    CAS  Article  Google Scholar 

  6. 6

    Castro-Muñoz R, Gonzalez-Melgoza LL, García-Depraect O (2021) Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 270:129421. https://doi.org/10.1016/j.chemosphere.2020.129421

    CAS  Article  Google Scholar 

  7. 7

    Petersen R (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83:81–150. https://doi.org/10.1016/0376-7388(93)80014-O

    CAS  Article  Google Scholar 

  8. 8

    Castro-Muñoz R (2020) Breakthroughs on tailoring pervaporation membranes for water desalination: a review. Water Res 187:116428. https://doi.org/10.1016/j.watres.2020.116428

    CAS  Article  Google Scholar 

  9. 9

    Lau WJ, Ismail AF, Misdan N, Kassim MA (2011) A recent progress in thin film composite membrane: a review. Desalination 287:190–199. https://doi.org/10.1016/j.desal.2011.04.004

    CAS  Article  Google Scholar 

  10. 10

    Wang ZY, Wang ZX, Lin SH, Jin HL, Gao SJ, Zhu YZ (2018) Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-04467-3

    CAS  Article  Google Scholar 

  11. 11

    Subramanian S, Seeram R (2013) New directions in nanofiltration applications-are nanofibers the right materials as membranes in desalination? Desalination 308:198–208. https://doi.org/10.1016/j.desal.2012.08.014

    CAS  Article  Google Scholar 

  12. 12

    Yoon K, Hsiao BS, Chu B (2009) High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J Membr Sci 326:484–492. https://doi.org/10.1016/j.memsci.2008.10.023

    CAS  Article  Google Scholar 

  13. 13

    Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(eaab0530):1–10. https://doi.org/10.1126/science.aab0530

    CAS  Article  Google Scholar 

  14. 14

    Zhang QG, Liu QL, Jiang ZY, Chen Y (2007) Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. J Membr Sci 287:237–245. https://doi.org/10.1016/j.memsci.2006.10.041

    CAS  Article  Google Scholar 

  15. 15

    Jeong B, Subramani A, Yan Y (2005) Antifouling thin film nanocomposite (TFNC) membranes for desalination and water reclamation. In: AIChE annual meeting and fall showcase, https://aiche.confex.com/aiche/2005/techprogram/P24585.HTM

  16. 16

    Tan Z, Chen SF, Peng XS, Zhang L, Gao CJ (2018) Polyamide membranes with nanoscale turing structures for water purification. Science 360:518–521. https://doi.org/10.1126/science.aar6308

    CAS  Article  Google Scholar 

  17. 17

    Shao DD, Yang WJ, Xiao HF, Wang ZY, Zhou C, Cao XL, Sun SP (2020) Self-Cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Appl Mater Int 12:580–590. https://doi.org/10.1021/acsami.9b16704

    CAS  Article  Google Scholar 

  18. 18

    Mccutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247. https://doi.org/10.1016/j.memsci.2006.07.049

    CAS  Article  Google Scholar 

  19. 19

    Karan S, Samitsu S, Peng X, Kurashima K, Ichinose I (2012) Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335:444–447. https://doi.org/10.1126/science.1212101

    CAS  Article  Google Scholar 

  20. 20

    Gorgojo P, Karan S, Wong HC, Jimenez-Solomon M, Cabral JT, Livingston AG (2014) Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv Funct Mater 24:4729–4737. https://doi.org/10.1002/adfm.201400400

    CAS  Article  Google Scholar 

  21. 21

    Karan S, Jiang Z, Livingston AG (2015) Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–1351. https://doi.org/10.1126/science.aaa5058

    CAS  Article  Google Scholar 

  22. 22

    Song X, Qi S, Tang CY, Gao C (2017) Ultra-thin, multi-layered polyamide membranes: synthesis and characterization. J Membr Sci 540:10–18. https://doi.org/10.1016/j.memsci.2017.06.016

    CAS  Article  Google Scholar 

  23. 23

    Gao Y, Su KM, Wang XT, Zhang ML, Li ZH, Jia K (2020) NGO/PA layer with disordered arrangement hybrid PPS composite membrane for desalination. Desalination 479:114211. https://doi.org/10.1016/j.desal.2019.114211

    CAS  Article  Google Scholar 

  24. 24

    Hung WS, An QF, Guzman MD et al (2014) Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68:670–677. https://doi.org/10.1016/j.carbon.2013.11.048

    CAS  Article  Google Scholar 

  25. 25

    Pan DY, Guo L, Zhang JC et al (2012) Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22:3314–3318. https://doi.org/10.1039/C2JM16005F

    CAS  Article  Google Scholar 

  26. 26

    Gao Y, Su KM, Wang XT, Li ZH (2019) A Metal-nano go frameworks/pps membrane with super water flux and high dyes interception. J Membr Sci 574:55–64. https://doi.org/10.1016/j.memsci.2018.12.052

    CAS  Article  Google Scholar 

  27. 27

    Wang X, Li ZH, Zhang ML, Fan TT, Cheng BW (2017) Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC Adv 7:10503–10516. https://doi.org/10.1039/C6RA28762J

    CAS  Article  Google Scholar 

  28. 28

    Gao Y, Li ZH, Cheng BW, Su KM (2017) Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation. Sep Purif Technol 192:262–270. https://doi.org/10.1016/j.seppur.2017.09.065

    CAS  Article  Google Scholar 

  29. 29

    Xu Y, Li ZH, Su KM, Fan TT, Cao L (2018) Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chem Eng J 341:371–382. https://doi.org/10.1016/j.cej.2018.02.048

    CAS  Article  Google Scholar 

  30. 30

    Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13. https://doi.org/10.1016/j.memsci.2014.01.050

    CAS  Article  Google Scholar 

  31. 31

    He DF, Shen LM, Zhang XY, Wang YF, Bao NZ, Kung HH (2014) An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AICHE J 60:2757–2764. https://doi.org/10.1002/aic.14499

    CAS  Article  Google Scholar 

  32. 32

    Song HS, Ko CH, Ahn W, Kim BJ, Croiset E, Chen ZW, Nam SC (2012) Selective dibenzothiophene adsorption on graphene prepared using different methods. Ind Eng Chem Res 51:10259–10264. https://doi.org/10.1021/ie301209c

    CAS  Article  Google Scholar 

  33. 33

    Murphy H, Papakonstantinou P, Okpalugo TIT (2006) Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J Vac Sci Technol B 24:715–720. https://doi.org/10.1116/1.2180257

    CAS  Article  Google Scholar 

  34. 34

    Wu MB, Yang HC, Wang JJ, Wu GP, Xu ZK (2017) Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification. ACS Appl Mater Inter 9:5062–5066. https://doi.org/10.1021/acsami.7b00017

    CAS  Article  Google Scholar 

  35. 35

    Belfer S, Purinson Y, Kedem O (1998) Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: an ATR-FTIR study. Acta Polym 49:574–582. https://doi.org/10.1002/(SICI)1521-4044(199810)49:10/11%3c574::AID-APOL574%3e3.0.CO;2-0

    CAS  Article  Google Scholar 

  36. 36

    Seman MNA, Khayet M, Hilal N (2010) Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci 348:109–116. https://doi.org/10.1016/j.memsci.2009.10.047

    CAS  Article  Google Scholar 

  37. 37

    Nowbahar A, Mansard V, Mecca JM, Paul M, Arrowood T, Squires TM (2018) Measuring interfacial polymerization kinetics using microfluidic interferometry. J Am Chem Soc 140:3173–3176. https://doi.org/10.1021/jacs.7b12121

    CAS  Article  Google Scholar 

  38. 38

    Forsberg P, Nikolajeff F, Karlsson M (2011) Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 7:104–109. https://doi.org/10.1039/C0SM00595A

    CAS  Article  Google Scholar 

  39. 39

    Murakami D, Jinnai H, Takahara A (2014) Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 30:2061–2067. https://doi.org/10.1021/la4049067

    CAS  Article  Google Scholar 

  40. 40

    Zhao S, Wang Z (2016) A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J Membr Sci 524:214–224. https://doi.org/10.1016/j.memsci.2016.11.035

    CAS  Article  Google Scholar 

  41. 41

    Chen YL, He CJ (2017) High salt permeation nanofiltration membranes based on NMG-assisted polydopamine coating for dye/salt fractionation. Desalination 413:29–39. https://doi.org/10.1016/j.desal.2017.03.008

    CAS  Article  Google Scholar 

  42. 42

    Freger V (2003) Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 19:4791–4797. https://doi.org/10.1021/la020920q

    CAS  Article  Google Scholar 

  43. 43

    Schaep J, Bruggen BVD, Vandecasteele C, Wilms D (1998) Influence of ion size and charge in nanofiltration. Sep Purif Technol 14:155–162. https://doi.org/10.1016/S1383-5866(98)00070-7

    CAS  Article  Google Scholar 

  44. 44

    Arjmandi M, Peyravi M, Altaee A, Arjmandi A, Chenar MP, Jahanshahi M, Binaeian E (2020) A state-of-the-art protocol to minimize the internal concentration polarization in forward osmosis membranes. Desalination 480:114355. https://doi.org/10.1016/j.desal.2020.114355

    CAS  Article  Google Scholar 

Download references


The authors thank Prof. Lihua Lyu for her contribution in the process of manuscript writing. The authors are grateful for the financial support from China Petroleum Chemical Co Technology Development Project (218006-8), National Natural Science Foundation of China (no. 21878231 and 21676202) and Science and Technology Plans of Tianjin (No. 18PTSYJC00180).

Author information



Corresponding authors

Correspondence to Yuan Gao or Zhenhuan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Pedro Camargo.

Supplementary Information

Below is the link to the electronic supplementary material.


Supplementary file1 (DOCX 6599 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhou, X., Zhang, M. et al. A PA/O-NGO/PPS sandwich composite membrane prepared via multi-step interfacial polymerization for desalination. J Mater Sci 56, 11736–11748 (2021). https://doi.org/10.1007/s10853-021-06062-2

Download citation