Jaiswal A, Verma A, Jaiswal P (2018) Detrimental effects of heavy metals in soil, plants, aquatic ecosystem as well as in humans. J Environ Pathol Toxicol Oncol 37:183–197
Article
Google Scholar
Ebqa’ai M, Ibrahim B (2017) Application of multivariate statistical analysis in the pollution and health risk of traffic-related heavy metals. Environ Geochem Health 39:1441–1456
Article
Google Scholar
Song Q, Li J (2014) Environmental effects of heavy metals derived from the waste recycling activities in China: a systematic review. Waste Manage 34:2587–2594
CAS
Article
Google Scholar
Li Z, Ma T, Yuan C, Hou JY, Wang QL, Wu LH, Christie P, Luo YM (2016) Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environ Sci Pollut Res 23:17625–17634
CAS
Article
Google Scholar
Zhao Y, Xu M, Liu Q, Wang Z, Zhao L, Chen Y (2018) Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the jiangsu coastal region, china: a case study of the sheyang estuary. Mar Pollut Bull 137:601–609
CAS
Article
Google Scholar
Ibrahim F, Nomier MA, Sabik LME, Shaheen MA (2020) Manganese-induced neurotoxicity and the potential protective effects of lipoic acid and spirulina platensis. Toxicol Mech Method 30:497–507
CAS
Article
Google Scholar
Kumar MR, Reddy KS, Reddy AG, Reddy RA, Reddy DG (2011) Lead-induced hepatotoxicity and evaluation of certain antistress adaptogens in poultry. Toxicol Int 18:62–66
Article
Google Scholar
Letelier ME, Lepe AM, Faúndez M, Salazar J, Marín R, Aracena P, Speisky H (2005) Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem-Biol Interact 151:71–82
CAS
Article
Google Scholar
Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418
CAS
Article
Google Scholar
Zhu Y, Fan WH, Zhou TT, Li XM (2019) Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci Total Environ 678:253–266
CAS
Article
Google Scholar
Xiang T, Zhang ZL, Liu HQ, Yin ZZ, Li L (2013) Liu XM (2013) Characterization of cellulose-based electrospun nanofiber membrane and its adsorptive behaviour using Cu(II), Cd(II), Pb(II) as models. Sci China Chem 56:567–575
CAS
Article
Google Scholar
Hussain MS, Musharraf SG, Bhanger MI, Malik MI (2020) Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int J Biol Macromol 147:643–652
CAS
Article
Google Scholar
Godiya CB, Cheng X, Li DW, Chen Z, Lu XL (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in waste water. J Hazard Mater 364:28–38
CAS
Article
Google Scholar
Hu Y, Wu XY, He X, Xing D (2019) Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polym Adv Technol 30:545–551
CAS
Article
Google Scholar
Kim MS, Park SJ, Gu BK, Kim CH (2012) Ionically crosslinked alginate carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262:28–33
CAS
Article
Google Scholar
Hu ZH, Omer AM, Ouyang XK, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157
CAS
Article
Google Scholar
Anamizu M, Tabata Y (2019) Design of injectable hydrogels of gelatin and alginate with ferric ions for cell transplantation. Acta biomater 100:184–190
CAS
Article
Google Scholar
Edathil AA, Alhseina E, Banat F (2019) Removal of heat stable salts from industrial lean methyldiethanolamine using magnetic alginate/iron oxide hydrogel composite. Int J Greenh Gas Con 83:117–127
CAS
Article
Google Scholar
Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119
CAS
Article
Google Scholar
Ure D, Mutus B (2021) The removal of inorganic phosphate from water using carboxymethyl cellulose-iron hydrogel beads. J chem Technol Biot 96:38–47
CAS
Article
Google Scholar
Nagireddy NR, Yallapu MM, Kokkarachedu V, Sakey R, Kanikireddy V, Alias JP, Konduru MR (2011) Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction. J Polym Res 18:2285–2294
CAS
Article
Google Scholar
Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresource Technol 105:24–30
CAS
Article
Google Scholar
Wang WB, Zhang HX, Shen JF, Ye MX (2018) Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent adsorption ability via freezing-tawing method. Colloid Surface A 553:672–680
CAS
Article
Google Scholar
Facchia DP, Cazettac AL, Canesina EA, Almeida VC, Bonaféa EG, Kipperd MJ, Martins AF (2018) New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem Eng J 337:595–608
Article
Google Scholar
Zhang H, Omer AM, Hu ZH, Yang LY, Ji C, Ouyang XK (2019) Fabrication of magnetic entonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Int J Biol Macromol 135:490–500
CAS
Article
Google Scholar
Zhang YP, Li ZK (2017) Heavy metals removal using hydrogel-supported nanosized hydrousferric oxide: synthesis, characterization, and mechanism. Sci. Total Environ. 580:776–786
CAS
Article
Google Scholar
Zhang SY, Gao H, Guo PT, Li TL, Lin TS, Ding R, Wang ZB, He P (2020) Fabrication and extrusion of the PAAm SAlg hydrogels with magnetic particles. Colloid Surface A 603:125280
CAS
Article
Google Scholar
Ren HX, Gao ZM, Wu DJ, Jiang JH, Sun YM, Luo CW (2016) Efficient Pb(II) removal using sodium alginatecarboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohyd Polym 137:402–409
CAS
Article
Google Scholar
Hu XY, Wang YM, Zhang LL, Xu M, Zhang JF, Dong W (2018) Design of a pH sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. Int J Biol Macromol 107:1811–1820
CAS
Article
Google Scholar
Jeddi MK, Mahkam M (2019) Magnetic nano carboxymethyl cellulose-alginate /chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol 135:829–838
Article
Google Scholar
Dai HJ, Zhang H, Ma L, Zhou HY, Yu Y, Guo T, Zhang YH, Huang HH (2019) Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol:synthesis, characterization and naringin prolonged release. Carbohyd Polym 209:51–61
CAS
Article
Google Scholar
Kaewprom C, Nuengmatcha P, Chanthai S (2018) Diethyldithiocarbamate doped graphene quantum dots based metal complex nanoparticles by resonance light scattering for green detection of lead(II). Oriental J Chem 34:623–630
CAS
Article
Google Scholar
Hu Y, Fu X, Chen XD, Zhong NJ (2012) Solution properties of mixed starch/chitosan revealed by resonance light scattering. Chem Res Chin Univ 28:1107–1111
CAS
Google Scholar
Li J, Tong JJ, Li XH, Yang ZJ, Zhang YC, Diao GW (2016) Facile microfluidic synthesis of copolymer hydrogelbeads for the removal of heavy metal ions. J Mater Sci 51:10375–10385. https://doi.org/10.1007/s10853-016-0258-0
CAS
Article
Google Scholar
Kosa SA, Al-Zhrani G, Salam MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 182:159–168
Article
Google Scholar
Maity J, Ray SK (2017) Competitive removal of Cu(II) and Cd(II) from water using a biocomposite hydrogel. J Phys Chem B 121:10988–11001
CAS
Article
Google Scholar
Lee SM, Tiwari D, Choi KM, Yang JK, Chang YY, Lee HD (2009) Removal of Mn(II) from aqueous solutions using manganese-coated sand samples. J Chem Eng Data 54:1823–1828
CAS
Article
Google Scholar
Li Z, Chen J, Ge Y (2017) Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chem Eng J 308:809–817
CAS
Article
Google Scholar
Jiang HB, Yang YR, Lin ZK, Zhao BC, Wang J, Xie J, Zhang AP (2020) Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide graphene oxide hydrogel for the adsorption of heavy metal ion. Sci Total Environ 744:140653
CAS
Article
Google Scholar
Zhao BC, Jiang HB, Lin ZK, Xu SF, Xie J, Zhang AP (2019) Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohyd Polym 224:115022
Article
Google Scholar
Mao SM, Liu XJ, Alharbi NS, Rohani S, Lu J (2018) Fabrication of xanthate-modified chitosan/poly(N-sopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions. Chem Eng Res Des 39:197–210
Google Scholar