Synthesis and characterization of WS2/SiO2 microfibers


Tungsten disulfide polycrystalline microfibers were successfully synthesized by a process involving electrospinning, calcination, and sulfidation steps. We used an aqueous solution of silicotungstic acid (H4SiW12O40) and polyvinyl alcohol as precursors for the synthesis of composite fibers by the needle-less electrospinning technique. The obtained green composite fibers (av. diam. 460 nm) were converted by calcination in air to tungsten oxide WO3 fibers with traces of SiO2 and a smaller diameter (av. diam. 335 nm). The heat treatment of the WO3 fibers under flowing H2/H2S/N2 stream led to conversion to tungsten disulfide WS2 with retention of the fibrous morphology (av. diam. 196 nm). Characterization of the intermediate and final fibers was performed by the XRD, SEM, TEM, HAADF STEM EDS, elemental analyses ICP-OES, and IR spectroscopy methods.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1

    Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Sci.

    Article  Google Scholar 

  2. 2

    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170.

    CAS  Article  Google Scholar 

  3. 3

    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703.

    CAS  Article  Google Scholar 

  4. 4

    Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22:326–338.

    CAS  Article  Google Scholar 

  5. 5

    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1:2–23.

    CAS  Article  Google Scholar 

  6. 6

    Esfahani H, Jose R, Ramakrishna S (2017) Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials 10:1238.

    CAS  Article  Google Scholar 

  7. 7

    Zhou X, Shang C, Gu L, Dong S, Chen X, Han P, Li L, Yao J, Liu Z, Xu H, Zhu Y, Cui G (2011) Mesoporous coaxial titanium nitride-vanadium nitride fibers of core–shell structures for high-performance supercapacitors. ACS Appl Mater Interfaces 3:3058–3063.

    CAS  Article  Google Scholar 

  8. 8

    Zhou X, Qiu Y, Yu J, Yin J, Gao S (2011) Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction. Int J Hydrogen Energy 36:7398–7404.

    CAS  Article  Google Scholar 

  9. 9

    Yang Y, Wang H, Lu X, Zhao Y, Li X, Wang C (2007) Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties. Mater Sci Eng B 140:48–52.

    CAS  Article  Google Scholar 

  10. 10

    Jirsak O, Sanetrnik O, Lukas D, Kotek V, Martinova L, Chaloupek J (2005) A Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. WO 2005/024101 A1, 2005

  11. 11

    Jirsak O, Petrik S (2012) Recent advances in nanofibre technology: needleless electrospinning. Int J Nanotechnol 9:836–845.

    CAS  Article  Google Scholar 

  12. 12

    Zukalova M, Prochazka J, Bastl Z, Duchoslav J, Rubacek L, Havlicek D, Kavan L (2010) Facile conversion of electrospun Tio2 into titanium nitride/oxynitride fibers. Chem Mater 22:4045–4055.

    CAS  Article  Google Scholar 

  13. 13

    Misono M (2009) Recent progress in the practical applications of heteropolyacid and perovskite catalysts: catalytic technology for the sustainable society. Catal Today 144:285–291.

    CAS  Article  Google Scholar 

  14. 14

    Kourasi M, Wills RGA, Shah AA, Walsh FC (2014) Heteropolyacids for fuel cell applications. Electrochim Acta 127:454–466.

    CAS  Article  Google Scholar 

  15. 15

    Mohl M, Rautio A-R, Asres GA, Wasala M, Patil PD, Talapatra S, Kordas K (2020) 2D Tungsten chalcogenides: synthesis, properties and applications. advanced materials. Interfaces 7:2000002.

    CAS  Article  Google Scholar 

  16. 16

    Eftekhari A (2017) Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A 5:18299–18325.

    CAS  Article  Google Scholar 

  17. 17

    Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda E, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855.

    CAS  Article  Google Scholar 

  18. 18

    Wang K, Feng W-L, Qin X, Deng D-S, Feng X, Zhang C (2017) Tungsten sulfide nanoflakes: synthesis by electrospinning and their gas sensing properties. Z Naturforschung 72(4):375–381.

    CAS  Article  Google Scholar 

  19. 19

    Youn D-H, Kim B-J, Yun SJ (2020) Synthesis and gas sensing properties of WS2 nanocrystallites assembled hierarchical WS2 fibers by electrospinning. Nanotechnology 31:105602.

    CAS  Article  Google Scholar 

  20. 20

    Rapoport L, Fleischer N, Tenne R (2005) Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J Mater Chem 15:1782–1788.

    CAS  Article  Google Scholar 

  21. 21

    Xu X, Li X, Zhang J, Qiao K, Han D, Wei S, Xing W, Yan Z (2019) Surfactant assisted electrospinning of WS2 nanofibers and its promising performance as anode material of sodium-ion batteries. Electrochim Acta 302:259–269.

    CAS  Article  Google Scholar 

  22. 22

    Tenne R, Redlich M (2010) Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Chem Soc Rev 39:1423–1434.

    CAS  Article  Google Scholar 

  23. 23

    Višić B, Panchakarla LS, Tenne R (2017) Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology. J Am Chem Soc 139:12865–12878.

    CAS  Article  Google Scholar 

  24. 24

    Albu-Yaron A, Sinha SS, Tenne R (2020) Nanotubes from two-dimensional materials in contemporary energy research: historical and perspective outlook. ACS Energy Lett 5:1498–1511.

    CAS  Article  Google Scholar 

  25. 25

    Yin W, Liu X, Zhang X, Gao X, Colvin VL, Zhang Y, Yu WW (2020) Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications. Chem Mater 32:4409–4424.

    CAS  Article  Google Scholar 

  26. 26

    Zhu Y, Zhang X, Ji Y, Feng Y, Zhang J (2013) Fabrication of WS2 nanofibers from WO3 nanofibers prepared by an electrospinning method. J Nanosci Nanotechnol 13:1983–1987.

    CAS  Article  Google Scholar 

  27. 27

    Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362–5367.

    CAS  Article  Google Scholar 

  28. 28

    Petras D, Mares L, Stranska D (2008) Method and device for production of nanofibers from polymeric solution through electrostatic spinning. US Patent US 2008/0307766A1

  29. 29

    Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58:493–497.

    CAS  Article  Google Scholar 

  30. 30

    Tao J, Shivkumar S (2007) Molecular weight dependent structural regimes during the electrospinning of PVA. Mater Lett 61:2325–2328.

    CAS  Article  Google Scholar 

  31. 31

    Alcohol MP, Clariant (1999)

  32. 32

    Pallas NR, Harrison Y (1990) An automated drop shape apparatus and the surface tension of pure water. Colloids Surf 43:169–194.

    CAS  Article  Google Scholar 

  33. 33

    Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polymer J 41:423–432.

    CAS  Article  Google Scholar 

  34. 34

    Ketpang K, Kim M, Kim S, Shanmugam S (2013) High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3−x nanofacets. Int J Hydrog Energy 38:9732–9740.

    CAS  Article  Google Scholar 

  35. 35

    Vasu K, Meiron OE, Enyashin AN, Bar-Ziv R, Bar-Sadan M (2019) Effect of ru doping on the properties of MoSe2 nanoflowers. J Phys Chem C 123:1987–1994.

    CAS  Article  Google Scholar 

Download references


We thank Dr. Y. Feldman for the XRD analysis. This research has been financially supported by the MEYS CR under the project CEITEC 2020 (LQ1601) and the Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 810626 (SINNCE). CIISB research infrastructure project LM2018127 funded by the MEYS CR is gratefully acknowledged for the financial support of the measurements at the CEITEC MU CF X-ray Diffraction and Bio-SAXS and the CF Cryo-electron Microscopy and Tomography. The support of the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, the Perlman Family Foundation, the Kimmel Center for Nanoscale Science Grant No. 43535000350000, is greatly acknowledged.

Author information



Corresponding authors

Correspondence to Reshef Tenne or Jiri Pinkas.

Ethics declarations

Conflict of interest

The authors declare no conflicting financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: N. Ravishankar.

Supplementary Information

Below is the link to the electronic supplementary material.


Supplementary file1 (DOCX 339 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kundrat, V., Rosentsveig, R., Brontvein, O. et al. Synthesis and characterization of WS2/SiO2 microfibers. J Mater Sci 56, 10834–10846 (2021).

Download citation