Facile synthesis of Mg-formate MOF-derived mesoporous carbon for fast capacitive deionization

Abstract

Alkaline-earth metal-based MOF has many merits such as light weight, environmental friendliness and low cost, but it has rarely been used in energy storage and capacitive deionization (CDI). This paper presents a facile method for the fast synthesis of small-size magnesium formate MOF (Mg-MOF) under mild conditions by linker-free incubation in the presence of Mg(CH3COO)2⋅ 4H2O and dimethylformamide. The formic acid was in situ formed as ligand to facilitate the formation of Mg-MOF. The effect of incubation time on the morphology of MOF crystals was investigated. The small and well-defined Mg-MOF particles with the size of ~ 18 nm were formed in 1 h incubation, characterized by scanning electron microscopy and X-ray diffraction. Following carbonization, the Mg-MOF-derived mesoporous carbon was obtained. N2-sorption isotherm confirmed the mesoporous structure. Cyclic voltammetry test indicated the good electric double-layer feature of the Mg-MOF-derived carbon electrode, and the impedance results showed the excellent conductivity. As a capacitor electrode material, it delivered the specific capacitances of 102 F/g by GCD (0.2 A/g). The Mg-MOF-derived carbon electrode was applied successfully for capacitive deionization (CDI) with a desalination capacity of 8.0 mg/g in a CDI device. A supper fast desalination rate of 1.1 mg/g/min was achieved due to the abundant mesoporous structure. The work provides a cost effective and environmentally friendly way for the synthesis of MOF-based carbon materials free of transition metal, and the prospects for CDI application have been demonstrated.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Tsai S-W, Hackl L, Kumar A, Hou C-H (2021) Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination 497:114764

    CAS  Google Scholar 

  2. 2

    Zhao Y, Li X, Mo X, Li K (2020) The design of nitrogen-doped core–shell-structured mesopore-dominant hierarchical porous carbon nanospheres for high-performance capacitive deionization. Environ Sci: Nano 7(11):3575–3586

    CAS  Google Scholar 

  3. 3

    Wu T, Wang G, Wang S, Zhan F, Fu Y, Qiao H, Qiu J (2018) Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environ Sci Technol Lett 5(2):98–102

    CAS  Google Scholar 

  4. 4

    Chang L, Hu YH (2018) Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization. J Phys Chem Sold 116:347–352

    CAS  Google Scholar 

  5. 5

    Wen X, Zhang D, Shi L, Yan T, Wang H, Zhang J (2012) Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J Mater Chem 22(45):23835–23844

    CAS  Google Scholar 

  6. 6

    Zhao R, Biesheuvel PM, van der Wal A (2012) Energy consumption and constant current operation in membrane capacitive deionization. Energy Environ Sci 5(11):9520

    CAS  Google Scholar 

  7. 7

    Mubita TM, Porada S, Biesheuvel PM, van der Wal A, Dykstra JE (2018) Capacitive deionization with wire-shaped electrodes. Electrochim Acta 270:165–173

    CAS  Google Scholar 

  8. 8

    Li H, Pan L, Nie C, Liu Y, Sun Z (2012) Reduced graphene oxide and activated carbon composites for capacitive deionization. J Mater Chem A 22(31):15556–15561

    CAS  Google Scholar 

  9. 9

    El-Gendy DM, Abdel Hameed RM, Al-Enizi AM, Bakrey M, Ubaidullah M, Yousef A (2020) Synthesis and characterization of WC@GNFs as an efficient supercapacitor electrode material in acidic medium. Ceram Int 46(17):27437–27445

    CAS  Google Scholar 

  10. 10

    Alhokbany N, Ahmed J, Ubaidullah M, Mutehri S, Khan MAM, Ahamad T, Alshehri SM (2020) Cost-effective synthesis of NiCo2O4@nitrogen-doped carbon nanocomposite using waste PET plastics for high-performance supercapacitor. J Mater Sci: Mater Electron 31(19):16701–16707

    CAS  Google Scholar 

  11. 11

    Ahamad T, Naushad M, Ubaidullah M, Alzaharani Y, Alshehri SM (2020) Birnessite-type manganese dioxide nanoparticles embedded with nitrogen-doped carbon for high-performance supercapacitor. J Energy Storage 32:101952

    Google Scholar 

  12. 12

    Kim T, Dykstra JE, Porada S, van der Wal A, Yoon J, Biesheuvel PM (2015) Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. J Colloid Interface Sci 446:317–326

    CAS  Google Scholar 

  13. 13

    Zornitta RL, García-Mateos FJ, Lado JJ, Rodríguez-Mirasol J, Cordero T, Hammer P, Ruotolo LAM (2017) High-performance activated carbon from polyaniline for capacitive deionization. Carbon 123:318–333

    CAS  Google Scholar 

  14. 14

    Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A (2010) Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. J Phys Chem Lett 1(1):205–210

    CAS  Google Scholar 

  15. 15

    Choi J-H (2010) Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep Purif Technol 70(3):362–366

    CAS  Google Scholar 

  16. 16

    Wang G, Qian B, Dong Q, Yang J, Zhao Z, Qiu J (2013) Highly mesoporous activated carbon electrode for capacitive deionization. Sep Purif Technol 103:216–221

    CAS  Google Scholar 

  17. 17

    Xu P, Drewes JE, Heil D, Wang G (2008) Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res 42(10–11):2605–2617

    CAS  Google Scholar 

  18. 18

    Gabelich CJ, Tran TD, Suffet IH (2002) Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ Sci Technol 36(13):3010–3019

    CAS  Google Scholar 

  19. 19

    Quan X, Fu Z, Yuan L, Zhong M, Mi R, Yang X, Yi Y, Wang C (2017) Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. RSC Adv 7(57):35875–35882

    CAS  Google Scholar 

  20. 20.

    Santos C, Lado JJ, García-Quismondo E, Rodríguez IV, Hospital-Benito D, Palma J, Anderson MA, Vilatela JJ (2018) Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization. J Mater Chem A 6(23):10898–10908

    CAS  Google Scholar 

  21. 21

    Yang L, Shi Z, Yang W (2014) Enhanced capacitive deionization of lead ions using air-plasma treated carbon nanotube electrode. Surf Coat Technol 251:122–127

    CAS  Google Scholar 

  22. 22

    Zhang H, Liang P, Bian Y, Jiang Y, Sun X, Zhang C, Huang X, Wei F (2016) Moderately oxidized graphene–carbon nanotubes hybrid for high performance capacitive deionization. RSC Adv 6(64):58907–58915

    CAS  Google Scholar 

  23. 23

    Wang G, Pan C, Wang L, Dong Q, Yu C, Zhao Z, Qiu J (2012) Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim Acta 69:65–70

    CAS  Google Scholar 

  24. 24

    Pan H, Yang J, Wang S, Xiong Z, Cai W, Liu J (2015) Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization. J Mater Chem A 3(26):13827–13834

    CAS  Google Scholar 

  25. 25

    Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S, DePaoli D, Dai S (2011) Mesoporous carbon for capacitive deionization of saline water. Environ Sci Technol 45(23):10243–10249

    CAS  Google Scholar 

  26. 26

    Ubaidullah M, Ahmed J, Ahamad T, Shaikh SF, Alshehri SM, Al-Enizi AM (2020) Hydrothermal synthesis of novel nickel oxide@nitrogenous mesoporous carbon nanocomposite using costless smoked cigarette filter for high performance supercapacitor. Mater Lett 266:127492

    CAS  Google Scholar 

  27. 27

    Yan C, Kanaththage YW, Short R, Gibson CT, Zou L (2014) Graphene/Polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344:274–279

    CAS  Google Scholar 

  28. 28

    Tan RKL, Reeves SP, Hashemi N, Thomas DG, Kavak E, Montazami R, Hashemi NN (2017) Graphene as a flexible electrode: review of fabrication approaches. J Mater Chem A 5(34):17777–17803

    CAS  Google Scholar 

  29. 29

    Chang L, Li J, Duan X, Liu W (2015) Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochim Acta 176:956–964

    CAS  Google Scholar 

  30. 30

    Liu Y, Xu X, Wang M, Lu T, Sun Z, Pan L (2015) Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem Commun 51(60):12020–12023

    CAS  Google Scholar 

  31. 31

    Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V (2013) Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 6(12):3700–3712

    CAS  Google Scholar 

  32. 32

    Spanopoulos I, Bratsos I, Tampaxis C, Kourtellaris A, Tasiopoulos A, Charalambopoulou G, Steriotis TA, Trikalitis PN (2015) Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. CrystEngComm 17(3):532–539

    CAS  Google Scholar 

  33. 33

    Zhang J, Fang J, Han J, Yan T, Shi L, Zhang D (2018) N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. J Mater Chem A 6(31):15245–15252

    CAS  Google Scholar 

  34. 34

    Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43(16):5468–5512

    CAS  Google Scholar 

  35. 35

    Ubaidullah M, Al-Enizi AM, Ahamad T, Shaikh SF, Al-Abdrabalnabi MA, Samdani MS, Kumar D, Alam MA, Khan M (2021) Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. J Energy Storage 33:102125

    Google Scholar 

  36. 36

    Ubaidullah M, Al-Enizi AM, Shaikh S, Ghanem MA, Mane RS (2020) Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions. J King Saud Univ-Sci 32(4):2397–2405

    Google Scholar 

  37. 37

    Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767

    CAS  Google Scholar 

  38. 38

    Gao T, Li H, Zhou F, Gao M, Liang S, Luo M (2019) Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination 451:133–138

    CAS  Google Scholar 

  39. 39

    Yang D-A, Cho H-Y, Kim J, Yang S-T, Ahn W-S (2012) CO2capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5(4):6465–6473

    CAS  Google Scholar 

  40. 40

    Liao J, Jin B, Zhao Y, Liang Z (2019) Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture. J Chem Eng 372:1028–1037

    CAS  Google Scholar 

  41. 41

    McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J ACS 134(16):7056–7065

    CAS  Google Scholar 

  42. 42

    Mallick A, Saha S, Pachfule P, Roy S, Banerjee R (2010) Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites. J Mater Chem A 20(41):9073

    CAS  Google Scholar 

  43. 43

    Jiang W, Pan J, Wang J, Cai J, Gang X, Liu X, Sun Y (2019) A coin like porous carbon derived from Al-MOF with enhanced hierarchical structure for fast charging and super long cycle energy storage. Carbon 154:428–438

    CAS  Google Scholar 

  44. 44

    Purwajanti S, Zhang H, Huang X, Song H, Yang Y, Zhang J, Niu Y, Meka AK, Noonan O, Yu C (2016) Mesoporous magnesium oxide hollow spheres as superior arsenite adsorbent: synthesis and adsorption behavior. ACS Appl Mater Interfaces 8(38):25306–25312

    CAS  Google Scholar 

  45. 45

    Aleksandrzak M, Baranowska D, Kedzierski T, Sielicki K, Zhang S, Biegun M, Mijowska E (2019) Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Appl Catal B: Environ 257:117906

    CAS  Google Scholar 

  46. 46

    Mallick A, Saha S, Pachfule P, Roy S, Banerjee R (2011) Structure and gas sorption behavior of a new three dimensional porous magnesium formate. Inorg Chem 50(4):1392–1401

    CAS  Google Scholar 

  47. 47

    Xu J, Terskikh VV, Huang Y (2013) Resolving multiple non-equivalent metal sites in magnesium-containing metal–organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy. Chemistry–A European Journal 19(14): 4432–4436

  48. 48

    Rood JA, Noll BC, Henderson KW (2006) Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework alpha-[Mg3(O2CH)6]. Inorg Chem 45(14):5521–5528

    CAS  Google Scholar 

  49. 49

    Xie Z, Shang X, Xu K, Yang J, Hu B, Nie P, Jiang W, Liu J (2019) Facile synthesis of in situ graphitic-N doped porous carbon derived from Ginkgo leaf for fast capacitive deionization. J Electrochem Soc 166(8):E240–E247

    CAS  Google Scholar 

  50. 50

    Hussain T, Wang Y, Xiong Z, Yang J, Xie Z, Liu J (2018) Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization. J Colloid Interface Sci 532:343–351

    CAS  Google Scholar 

  51. 51

    Mao H, Xu J, Hu Y, Huang Y, Song Y (2015) The effect of high external pressure on the structure and stability of MOF α-Mg3(HCOO)6 probed by in situ Raman and FT-IR spectroscopy. J Mater Chem A 3(22):11976–11984

    CAS  Google Scholar 

  52. 52

    Wang ZM, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M (2004) Mn-3(HCOO)(6): a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. Chem Commun 4:416–417

    Google Scholar 

  53. 53

    Wang ZM, Zhang B, Kurmoo M, Green MA, Fujiwara H, Otsuka T, Kobayashi H (2005) Synthesis and characterization of a porous magnetic diamond framework, Co-3(HCOO)6, and its N-2 sorption characteristic. Inorg Chem 44(5):1230–1237

    CAS  Google Scholar 

  54. 54

    Yang J, Zou L (2014) Recycle of calcium waste into mesoporous carbons as sustainable electrode materials for capacitive deionization. Microporous Mesoporous Mater 183:91–98

    CAS  Google Scholar 

  55. 55

    Li Y, Hussain I, Qi J, Liu C, Li J, Shen J, Sun X, Han W, Wang L (2016) N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep Purif Technol 165:190–198

    CAS  Google Scholar 

  56. 56

    Baroud TN, Giannelis EP (2018) High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon 139:614–625

    CAS  Google Scholar 

  57. 57

    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  58. 58

    El-Deen AG, Barakat NAM, Khalil KA, Kim HY (2013) Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process. J Mater Chem A 1(36):11001–11010

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are much thankful to the support of National Nature Science Foundation of China (Grant No. 21776045 and 21476047).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jianmao Yang or Jianyun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Christopher Blanford.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2021_5962_MOESM1_ESM.docx

Supplementary file1 (DOCX 226 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Nie, P., Hu, B. et al. Facile synthesis of Mg-formate MOF-derived mesoporous carbon for fast capacitive deionization. J Mater Sci 56, 10282–10292 (2021). https://doi.org/10.1007/s10853-021-05962-7

Download citation