Numerical study of thermal effect in silicone rubber filled with carbonyl iron powder under microwave radiation


Thermal effect in absorbing composite is concerned gradually due to electromagnetic environment tends to high power, high frequency and wide bandwidth. Microstructure characteristics and some basic material properties of carbonyl iron powder/silicone rubber (CIP/SR) are obtained by experiments method. Complex permittivity and permeability of CIP/SR composite as an absorbing material is measured by the vector network analyzer. CIP/SR composite with 78 wt% particles filling exhibits excellent absorption performance in C and X band. A numerical model coupled with electromagnetic wave, heat transfer and mechanics theory is presented to study the thermal effect and mechanical damage of absorbing composite under microwave radiation. Microwave heating and attenuation mechanism of CIP/SR composite are discussed. Electric field, temperature, stress and deformation in CIP/SR composite are quantitatively characterized. The results indicate temperature distribution relates to electric polarization and hysteresis loss. Temperature of CIP/SR composite increases by 36 °C as microwave radiation lasts 2 s at 9.37 GHz. Thermal expansion and stress concentration will be aggravated as frequency increases.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16


  1. 1

    Wilson C (2008) High altitude electromagnetic pulse and high power microwave devices: threat assessments, Congressional Research Service.

  2. 2

    Loharkar PK, Ingle A, Jhavar S (2019) Parametric review of microwave-based materials processing and its applications. J Mater Res Technol 8(3):3306–3326.

    CAS  Article  Google Scholar 

  3. 3

    Wanasinghe D, Aslani F (2019) A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos Part B-Eng 176:107207.

    CAS  Article  Google Scholar 

  4. 4

    Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A (2019) Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos Part B-Eng 173:106906.

    CAS  Article  Google Scholar 

  5. 5

    Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285.

    CAS  Article  Google Scholar 

  6. 6

    Lou CW, Huang CL, Pan YJ, Lin ZI, Song XM, Lin JH (2016) Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J Polym Res 23(5):84.

    CAS  Article  Google Scholar 

  7. 7

    Sahoo BP, Naskar K, Tripathy DK (2012) Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47(5):2421–2433.

    CAS  Article  Google Scholar 

  8. 8

    Wang C, Murugadoss V, Kong J, He Z, Mai X, Shao Q (2018) Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140:696–733.

    CAS  Article  Google Scholar 

  9. 9

    Barsukov V, Senyk I, Kryukova O, Butenko O (2018) Composite carbon-polymer materials for electromagnetic radiation shielding. Mater Today Proc 5(8):15909–15914.

    CAS  Article  Google Scholar 

  10. 10

    Gupta S, Tai NH (2019) Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152:159–187.

    CAS  Article  Google Scholar 

  11. 11

    Li Z, Haigh A, Soutis C, Gibson A (2019) X-band microwave characterisation and analysis of carbon fibre-reinforced polymer composites. Compos Struct 208:224–232.

    Article  Google Scholar 

  12. 12

    Sankaran S, Deshmukh K, Ahamed MB, Pasha SK (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A-Appl S 114:49–71.

    CAS  Article  Google Scholar 

  13. 13

    Choy TC (2015) Effective medium theory: principles and applications. Oxford University Press, UK

    Google Scholar 

  14. 14

    Wu LZ, Ding J, Jiang HB, Chen LF, Ong CK (2005) Particle size influence to the microwave properties of iron based magnetic particulate composites. J Mater Res Technol 285(1–2):233–239.

    CAS  Article  Google Scholar 

  15. 15

    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B-Eng 39(6):933–961.

    CAS  Article  Google Scholar 

  16. 16

    Liu X, Wu Y, Zhang Z (2010) Theoretical study of the interface effect on the electromagnetic wave absorbing characteristics. Phys B 405(20):4393–4396.

    CAS  Article  Google Scholar 

  17. 17

    Quan B, Liang X, Ji G, Cheng Y, Liu W, Ma J, Xu G (2017) Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloy Compd 728:1065–1075.

    CAS  Article  Google Scholar 

  18. 18

    Wu N, Liu C, Xu D, Liu J, Liu W, Shao Q, Guo Z (2018) Enhanced electromagnetic wave absorption of three-dimensional porous fe3o4/c composite flowers. ACS Sustain Chem Eng 6(9):12471–12480.

    CAS  Article  Google Scholar 

  19. 19

    Adebayo LL, Soleimani H, Yahya N, Abbas Z, Wahaab FA, Ridwan AT, Ali H (2019) Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram Int 46(2):1249–1268.

    CAS  Article  Google Scholar 

  20. 20

    Sui M, Lü X, Xie A, Xu W, Rong X, Wu G (2015) The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synthetic Met 210:156–164.

    CAS  Article  Google Scholar 

  21. 21

    Yang RB, Liang WF (2011) Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J Appl Phys 109(7):07A311.

    CAS  Article  Google Scholar 

  22. 22

    Xu Y, Yuan L, Liang Z, Wang X, Li X (2017) A wide frequency absorbing material added CIPs using the fuse deposition modeling. J Alloy Compd 704:593–598.

    CAS  Article  Google Scholar 

  23. 23

    Cao XG, Ren H, Zhang HY (2015) Preparation and microwave shielding property of silver-coated carbonyl iron powder. J Alloy Compd 631:133–137.

    CAS  Article  Google Scholar 

  24. 24

    Khani O, Shoushtari MZ, Ackland K, Stamenov P (2017) The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J Magn Magn Mater 428:28–35.

    CAS  Article  Google Scholar 

  25. 25

    Min D, Zhou W, Qing Y, Fa L, Zhu D (2017) Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J Mater Sci 52(4):2373–2383.

    CAS  Article  Google Scholar 

  26. 26

    Duan Y, Li G, Liu L, Liu S (2010) Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber. B Mater Sci 33(5):633–636.

    CAS  Article  Google Scholar 

  27. 27

    Guo X, Yao Z, Lin H, Zhou J, Zuo Y, Xu X (2019) Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron@epoxy composites. J Magn Magn Mater 485:244–250.

    CAS  Article  Google Scholar 

  28. 28

    Qi Z, Chunbo L, Zhuang W, Yang Y, Zhiyong X, Haikun Z, Chudong C (2019) Preparation of rGO/PVA/CIP composites and their microwave absorption properties. J Magn Magn Mater 479:337–343.

    CAS  Article  Google Scholar 

  29. 29

    Li J, Feng WJ, Wang JS, Zhao X, Zheng WQ (2015) Impact of silica-coating on the microwave absorption properties of carbonyl iron powder. J Magn Magn Mater 393:82–87.

    CAS  Article  Google Scholar 

  30. 30

    Jeon S, Kim J, Kim KH (2019) Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl Surf Sci 75:1065–1069.

    CAS  Article  Google Scholar 

  31. 31

    Qing Y, Zhou W, Luo F, Zhu D (2009) Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. J Magn Magn Mater 321(1):25–28.

    CAS  Article  Google Scholar 

  32. 32

    Xu X, Zhang B, Xing L, Liu K, Bai M, Liu D (2018) Characterization and analysis of the thermal damages of aramid/epoxy composite laminates induced by the dielectric heating effect of microwaves. Compos Struct 200:371–379.

    Article  Google Scholar 

  33. 33

    Li Y, Hang X, Li N, Hao X (2016) A temperature distribution prediction model of carbon fiber reinforced composites during microwave cure. J Mater Process Tech 230:280–287.

    CAS  Article  Google Scholar 

  34. 34

    Li J, Kaunda RB, Arora S, Hartlieb P, Nelson PP (2019) Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation. J Rock Mech Geotech Eng 11(2):242–250.

    Article  Google Scholar 

  35. 35

    Kwon SK, Ahn JM, Kim GH, Chun CH, Hwang JS, Lee JH (2002) Microwave absorbing properties of carbon black/silicone rubber blend. Polym Eng Sci 42(11):2165–2171.

    CAS  Article  Google Scholar 

  36. 36

    Mabhouti K, Karamirad M, Norouzzadeh P, Golzan MM, Naderai R (2020) Measurement of electric and magnetic properties of ZnO nanoparticles in the X-Band using Nicolson–Ross–Weir analysis. J Electron Mater 2020:1–9.

    CAS  Article  Google Scholar 

  37. 37

    Meshram MR, Agrawal NK, Sinha B, Misra PS (2004) Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J Magn Magn Mater 271(2–3):207–214.

    CAS  Article  Google Scholar 

  38. 38

    Müller C (2013) Foundations of the mathematical theory of electromagnetic waves[M]. Springer, Berlin

    Google Scholar 

  39. 39

    Kalluri DK (2011) Electromagnetic waves, materials, and computation with MATLAB[M]. CRC Press, US

    Google Scholar 

  40. 40

    Legras B, Polaert I, Thomas M, Estel L (2013) About using microwave irradiation in competitive adsorption processes. Appl Therm Eng 57(1–2):164–171.

    CAS  Article  Google Scholar 

  41. 41

    Manière C, Zahrah T, Olevsky EA (2017) Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2. J Am Ceram Soc 100(6):2439–2450.

    CAS  Article  Google Scholar 

  42. 42

    Nigar H, Sturm GSJ, Garcia-Baños B et al (2019) Numerical analysis of microwave heating cavity: combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Appl Therm Eng 155:226–238.

    CAS  Article  Google Scholar 

  43. 43

    Loomis E, Greenfield SR, Luo SN et al (2009) The dynamics of thermal expansion in single crystal beryllium from nanosecond X-ray irradiation. Fusion Sci Technol 55(2):152–162.

    CAS  Article  Google Scholar 

  44. 44

    Milligan TA (2005) Modern antenna design. Wiley, New York

    Book  Google Scholar 

  45. 45

    Daniyan OL, Opara FE, Okere BI et al (2014) Horn antenna design: the concepts and considerations. Int J Emerg Technol Adv Eng 4(5):706–708

    Google Scholar 

Download references


This study is supported by the National Natural Science Foundation of China (No: 51875463), and the Research Funds of Shanxi Key Laboratory of Electromagnetic Protection Material and Technology (No: 33ZD1807KF001C).

Author information



Corresponding author

Correspondence to F. S. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X.T., Jiang, Z.P., Wang, F.S. et al. Numerical study of thermal effect in silicone rubber filled with carbonyl iron powder under microwave radiation. J Mater Sci 56, 10264–10281 (2021).

Download citation