Skip to main content
Log in

Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sulfide-based Na-ion solid electrolytes with high ionic conductivity are one of the most promising solid electrolytes for solid-state Na batteries. However, its poor chemical/electrochemical stability against Na metal leads to deterioration of interface. In addition, it is important to explore how to prepare sulfide-based composite membranes via solution method. Herein, Na3SbS4 is deposited on glassfiber framework via aqueous solution and further incorporated with trace of ionic liquid (IL). The Na3SbS4 composite pellets are well shaped avoiding the pressing process. The IL not only improves the Na3SbS4-Na interfacial stability, but also fills the pores between the framework and Na3SbS4 and thereby suppressing the dendrite formation. The Na plating/stripping tests on symmetric cells show polarization voltages lower than 0.1 V and stable cycling for more than 400 cycles under a current density of 0.1 mA cm−2 at room temperature. The cycling performance of the FeS2 half-cells with the optimized electrolyte tested at 60 °C is superior to that with organic liquid electrolyte.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chayambuka K, Mulder G, Danilov DL (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10:2001310

    CAS  Google Scholar 

  2. Delmas C, Carlier D, Guignard M (2020) The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv Energy Mater. https://doi.org/10.1002/aenm.202001201

    Article  Google Scholar 

  3. Jia M, Zhang L (2020) Recent development on sulfide solid electrolytes for solid-state sodium batteries. Energy Storage Sci Technol 9:1266–1283

    Google Scholar 

  4. Zhao Q, Stalin S, Archer LA (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5:229–252

    CAS  Google Scholar 

  5. Vaalma C, Buchholz D, Weil M (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:1–11

    Google Scholar 

  6. Zhou C, bag S, Thangadurai V, (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3:2181–2198

    CAS  Google Scholar 

  7. Zhang L, Zhang D, Yang K (2016) Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv Sci 3:1600089

    Google Scholar 

  8. Chen XZ, He WJ, Ding LX, Wang SQ, Wang HH (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12:938–944

    CAS  Google Scholar 

  9. Han F, Westover AS, Yue J (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 4:187–196

    CAS  Google Scholar 

  10. Hayashi A, Masuzawa N, Yubuchi S (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266

    CAS  Google Scholar 

  11. Zhu YZ, Mo YF (2020) Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed 59:17472–17476

    CAS  Google Scholar 

  12. Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695

    CAS  Google Scholar 

  13. Xiao Y, Wang Y, Ceder G (2019) Understanding interface stability in solid-state batteries. Nat Rev Mater 5:105–126

    Google Scholar 

  14. Hu P, Zhang Y, Chi X (2019) Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer. ACS Appl Mater Interfaces 11:9672–9678

    CAS  Google Scholar 

  15. Tian Y, Sun Y, Hannah DC (2019) Reactivity-guided interface design in Na metal solid-state batteries. Joule 3:1037–1050

    CAS  Google Scholar 

  16. Lu Y, Cai YC, Zhang Q (2019) A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries. Chem Sci 10:4306–4312

    CAS  Google Scholar 

  17. Zhang Z, Zhang L, Yan X (2019) All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J Power Sources 410:162–170

    Google Scholar 

  18. Tu Z, Choudhury S, Zachman MJ (2018) Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat Energy 3:310–316

    CAS  Google Scholar 

  19. Kato Y, Hori S, Saito T (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    CAS  Google Scholar 

  20. Lin Z, Liu Z, Fu W (2013) Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew Chem Int Ed 52:7460–7463

    CAS  Google Scholar 

  21. Lim H-D, Lim H-K, Xing X (2018) Solid electrolyte layers by solution deposition. Adv Mater Interfaces 5:1701328

    Google Scholar 

  22. Whiteley JM, Zhang W, Lee S-H (2015) Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927

    CAS  Google Scholar 

  23. Wang Z, Zhang P, Jia Y, Wang Z, Song J, Yan X, Zhang L (2021) Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. J Alloys Compd 853:157340

    CAS  Google Scholar 

  24. Nam YJ, Cho SJ, Oh DY (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15:3317–3323

    CAS  Google Scholar 

  25. Xu R, Yue J, Liu S (2019) Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett 4:1073–1079

    CAS  Google Scholar 

  26. Yang H, Hwang J, Wang Y (2019) N-ethyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ionic liquid electrolytes for sodium secondary batteries: effects of Na ion concentration. J Phys Chem C 123:22018–22026

    CAS  Google Scholar 

  27. Forsyth M, Porcarelli L, Wang X (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52:686–694

    CAS  Google Scholar 

  28. An T, Jia H, Peng L, Xie J (2020) Material and interfacial modification toward a stable room-temperature solid-state Na–S battery. ACS Appl Mater Interfaces 12:20563–20569

    CAS  Google Scholar 

  29. Zhang Z, Zhang L, Liu Y (2018) Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance. Chemsuschem 11:3774–3782

    CAS  Google Scholar 

  30. Zheng B, Zhu J, Wang H, Feng M, Umeshbabu E, Li Y, Wu Q, Yang Y (2018) Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 10:52473–52482

    Google Scholar 

  31. Matsumoto K, Hwang J, Kaushik S (2019) Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ Sci 12:3247–3287

    CAS  Google Scholar 

  32. Yang Q, Zhang Z, Sun XG (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064

    CAS  Google Scholar 

  33. Bai S, Da P, Li C (2019) Planar perovskite solar cells with long-term stability using ionic liquid additives. Nat 571:245–250

    CAS  Google Scholar 

  34. Sun H, Zhu GZ, Zhu YM (2020) High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater 32:2001741

    CAS  Google Scholar 

  35. Wang H, Chen Y, Hood Z, Sahu G, Pandian A, Keum J, An K, Liang C (2016) An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew Chem Int Ed 55:8551–8555

    CAS  Google Scholar 

  36. Banerjee A, Park K, Heo J, Nam Y, Moon C, Oh S, Hong S, Jung Y (2016) Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew Chem Int Ed 55:9634–9638

    CAS  Google Scholar 

  37. Fuchs T, Culver SP, Till P, Zeier WG (2020) Defect-mediated conductivity enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett 5:146–151

    CAS  Google Scholar 

  38. Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266

    CAS  Google Scholar 

  39. Kim TW, Park KH, Choi YE, Lee JY, Jung YS (2018) Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J Mater Chem A 6:840–844

    CAS  Google Scholar 

  40. Cao H, Yu M, Zhang L, Zhang Z, Yan X, Li P, Yu C (2020) Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing. J Mater Sci Technol 70:168–175

    Google Scholar 

  41. Liu Y, Zhang L, Liu D (2019) Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11:15497

    CAS  Google Scholar 

  42. Wan H, Cai L, Yao Y, Weng W, Feng Y, Mwizerwa JP (2020) Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4·0.1NaI composite for high-performance room-temperature all-solid-state sodium-sulfur battery. Small 16:2001574

    CAS  Google Scholar 

  43. Gamo H, Phuc NHH, Matsuda R, Muto H, Matsuda A (2019) Multiphase Na3SbS4 with high ionic conductivity. Mater Today Energy 13:45–49

    Google Scholar 

  44. Wan H, Mwizerwa JP, Han F, Weng W, Yang J, Wang C (2019) Grain-boundary-resistance-less Na3SbS4-Se solid electrolytes for all-solid-state sodium batteries. Nano Energy 66:104109

    CAS  Google Scholar 

  45. Wan H, Weng W, Han F, Cai L, Wang C, Yao X (2020) Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 33:100860

    CAS  Google Scholar 

  46. Zhang Q, Zhang C, Hood ZD, Chi M, Liang C, Jalarvo NH (2020) Abnormally low activation energy in cubic Na3SbS4 superionic conductors. Chem Mater 32:2264–2271

    CAS  Google Scholar 

  47. Zhang D, Cao X, Xu D, Wan N, Yu C, Hu W, Yan X (2018) Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. Electrochim Acta 259:100–109

    CAS  Google Scholar 

  48. Cheng E, Sharafi A, Sakamoto J (2017) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85–91

    CAS  Google Scholar 

  49. Shang Y, Chen N, Li Y, Chen S, Lai J, Huang Y, Qu W, Wu F, Chen R (2020) An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv Mater 32:2002017

    Google Scholar 

  50. Wang C, Gong Y, Liu B (2017) Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano lett 17:565–571

    CAS  Google Scholar 

  51. Dewees R, Wang H (2019) Synthesis and properties of NASICON-type LATP and LAGP solid electrolytes. Chemsuschem 12:3713–3725

    CAS  Google Scholar 

  52. Brutti S, Navarra MA, Maresca G (2019) Ionic liquid electrolytes for room temperature sodium battery systems. Electrochim Acta 306:317–326

    CAS  Google Scholar 

  53. Hong Z, Viswanathan V (2019) Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett 4:1012–1019

    CAS  Google Scholar 

  54. Nguyen CC, Woo SW, Song SW (2012) Understanding the interfacial processes at silicon–copper electrodes in ionic liquid battery electrolyte. J Phys Chem C 116:14764–14771

    CAS  Google Scholar 

  55. Zhao J, Liao L, Shi F (2017) Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 139:11550–11558

    CAS  Google Scholar 

  56. Lang J, Long Y, Qu J (2019) One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater 16:85–90

    Google Scholar 

  57. Gao Y, Zhao Y, Li Y (2017) Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc 139:15288–15291

    CAS  Google Scholar 

  58. Zhang X, Liu T, Zhang S (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785

    CAS  Google Scholar 

  59. Zhang Y, Sun Y, Peng L (2019) Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Mater 21:287–296

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation of Hebei Education Department (ZD2016033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cao, H. & Zhang, L. Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes. J Mater Sci 56, 10565–10574 (2021). https://doi.org/10.1007/s10853-021-05940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05940-z

Navigation