Experimental and computational investigation of Cu–N coordination bond strengthened polyaniline for stable energy storage


Cu–N coordination bond strengthened polyaniline (PANI-Cu) grown on carbon paper is designed to improve capacitive performance of conductive polymer supercapacitor. The cross-linking porous PANI-Cu nanofibers are synthesized via electro-polymerization and hydrothermal coordination process. Cu–N coordination bond strengthens interaction of PANI polymer molecular chain, contributing to improving its cycling stability. Copper cation with high redox potential promotes the conversion from benzene ring to quinone ring of PANI, contributing to improving its electroactivity. In comparison with PANI, PANI-Cu presents specific capacitance increasing from 350 to 825 F g−1 at 1 A g−1, rate capacitance retention increasing from 78 to 84% at a raising current density of 1–10 A g−1, cycling capacitance retention increasing from 61 to 91% at 5 A g−1 for 1000 cycles, rate capacitance recovery increasing from 84.0 to 96.7% at a recovering current density of 10–1 A g−1. The simulation calculation reveals that PANI-Cu has higher density of state (4.70 eV) at Fermi energy level, lower proton doping energy (− 5.56 eV) and lower molecule orbital energy gap (0.43 eV) than PANI (3.50 eV, − 2.41 eV, 0.91 eV). The computational results of higher conductivity agree with electrochemical measurement results of higher current response and capacitance, proving superior electroactivity of PANI-Cu. Flexible PANI-Cu supercapacitor exhibits an energy density of 62.1 Wh kg−1 at a power density of 900 W kg−1 and capacity retention of 87% at 5 A g−1 for 1000 cycles, presenting stable energy storage application.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Anju C, Palatty S (2019) Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive material. Electrochim Acta 299:626–635

    CAS  Article  Google Scholar 

  2. 2

    Xie Y (2019) Electrochemical performance of transition metal-coordinated polypyrrole: a mini review. Chem Rec 19:2370–2384

    CAS  Article  Google Scholar 

  3. 3

    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    CAS  Article  Google Scholar 

  4. 4

    Xie Y (2021) Capacitive performance of reduced graphene oxide modified sodium ion-intercalated manganese oxide composite electrode. J Electrochem Energy Stor Conv Stor 18:031007

    CAS  Article  Google Scholar 

  5. 5

    Xie Y (2020) Capacitive behavior of sodium ion pre-intercalation manganese dioxide supported on titanium nitride substrate. NANO 15:2050152

    CAS  Article  Google Scholar 

  6. 6

    Li P, Ruan C, Xu J, Xie Y (2020) Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet. Electrochim Acta 330:135334

    CAS  Article  Google Scholar 

  7. 7

    Xie Y (2020) Preparation and electrochemical properties of flow-through TiO2 nanoarray. J Nano Res 65:1–12

    CAS  Article  Google Scholar 

  8. 8

    Ruan C, Xie Y (2020) Electrochemical performance of activated carbon fiber with hydrogen bond-induced high sulfur/nitrogen doping. RSC Adv 10:37631–37643

    CAS  Article  Google Scholar 

  9. 9

    Xie Y, Zhang Y (2019) Electrochemical performance of carbon paper supercapacitor using sodium molybdate gel polymer electrolyte and nickel molybdate electrode. J Solid State Electrochem 23:1911–1927

    CAS  Article  Google Scholar 

  10. 10

    Xie Y (2020) Fabrication and electrochemical properties of flow-through PPY and PPY/PPY nanoarray. Pap Chem. https://doi.org/10.1007/s11696-020-01411-y

    Article  Google Scholar 

  11. 11

    Xie Y (2020) Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array. J Polym Eng. https://doi.org/10.1515/polyeng-2020-0232

    Article  Google Scholar 

  12. 12

    Yang C, Zhang L, Hu N et al (2017) Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem Eng J 309:89–97

    CAS  Article  Google Scholar 

  13. 13

    Xie Y, Zhou Y (2019) Enhanced capacitive performance of activated carbon paper electrode material. J Mater Res 34:2472–2481

    CAS  Article  Google Scholar 

  14. 14

    Ruan C, Li P, Xu J, Chen Y, Xie Y (2019) Activation of carbon fiber for enhancing electrochemical performance. Inorg Chem Front 6:3583–3597

    CAS  Article  Google Scholar 

  15. 15

    Ju H, Park D, Kim J (2019) Conductive polymer based high-performance hybrid thermoelectrics: polyaniline/tin(II) sulfide nanosheet composites. Polymer 160:24–29

    CAS  Article  Google Scholar 

  16. 16

    Xu J, Ruan C, Li P, Xie Y (2019) Excessive nitrogen doping of tin dioxide nanorod array grown on activated carbon fibers substrate for wire-shaped microsupercapacitor. Chem Eng J 378:122064

    CAS  Article  Google Scholar 

  17. 17

    Li P, Ruan C, Xu J, Xie Y (2019) Enhanced capacitive performance of CoO-modified NiMoO4 nanohybrid as advanced electrodes for asymmetric supercapacitor. J Alloys Compd 791:152–165

    CAS  Article  Google Scholar 

  18. 18

    Li P, Ruan C, Xu J, Xie Y (2019) A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO4/CoO nanohybrid on nickel foam. Nanoscale 11:13639–13649

    CAS  Article  Google Scholar 

  19. 19

    Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525

    CAS  Article  Google Scholar 

  20. 20

    Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    CAS  Article  Google Scholar 

  21. 21

    Ruan C, Li P, Xu J, Xie Y (2020) Electrochemical performance of hybrid membrane of polyaniline layer/full carbon layer coating on nickel foam. Prog Org Coat 139:105455

    CAS  Article  Google Scholar 

  22. 22

    Mu Y, Ruan C, Li P, Xu J, Xie Y (2020) Enhancement of electrochemical performance of cobalt (II) coordinated polyaniline: a combined experimental and theoretical study. Electrochim Acta 338:135881

    CAS  Article  Google Scholar 

  23. 23

    Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130

    CAS  Article  Google Scholar 

  24. 24

    Zhao J, Li Y, Chen X et al (2018) Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors. Electrochim Acta 292:458–467

    CAS  Article  Google Scholar 

  25. 25

    Lu L, Xie Y (2019) Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage. J Mater Sci 54:4842–4858. https://doi.org/10.1007/s10853-018-03185-x

    CAS  Article  Google Scholar 

  26. 26

    Wu D, Zhong W (2019) A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. J Mater Chem A 7:5819–5830

    CAS  Article  Google Scholar 

  27. 27

    Hsieh Y-Y, Zhang Y, Zhang L et al (2019) High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline. Nanoscale 11:6552–6560

    CAS  Article  Google Scholar 

  28. 28

    Chao J, Yang L, Liu J, Hu R, Zhu M (2018) Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim Acta 270:387–394

    CAS  Article  Google Scholar 

  29. 29

    Ghosh K, Yue CY, Sk MM, Jena RK (2017) Development of 3D urchin-shaped coaxial manganese Dioxide@Polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl Mater Interface 9:15350–15363

    CAS  Article  Google Scholar 

  30. 30

    Asen P, Shahrokhian S, Zad AI (2017) Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications. J Solid State Electrochem 22:983–996

    Article  CAS  Google Scholar 

  31. 31

    Hong X, Zhang B, Murphy E, Zou J, Kim F (2017) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J Power Sources 343:60–66

    CAS  Article  Google Scholar 

  32. 32

    Xu H, Wu J, Li C, Zhang J, Liu J (2015) Investigation of polyaniline films doped with Fe3+ as the electrode material for electrochemical supercapacitors. Electrochim Acta 165:14–21

    CAS  Article  Google Scholar 

  33. 33

    Li J, Cui M, Lai Y et al (2010) Investigation of polyaniline co-doped with Zn2+ and H+ as the electrode material for electrochemical supercapacitors. Synth Met 160:1228–1233

    CAS  Article  Google Scholar 

  34. 34

    Xie Y (2019) Electrochemical performance of transition metal-coordinated polypyrrole: a mini review. Chem Rec 19:1370–1384

    Google Scholar 

  35. 35

    Chen Y, Xie Y (2019) Electrochemical performance of manganese coordinated polyaniline. Adv Electron Mater 5:1900816

    CAS  Article  Google Scholar 

  36. 36

    Mu Y, Xie Y (2019) Theoretical and experimental comparison of electrical properties of nickel(ii) coordinated and protonated polyaniline. J Phys Chem C 123:18232–18239

    CAS  Article  Google Scholar 

  37. 37

    Dhibar S, Bhattacharya P, Hatui G, Sahoo S, Das CK (2014) Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain Chem Eng 2:1114–1127

    CAS  Article  Google Scholar 

  38. 38

    Xu J, Ruan C, Li P, Mu Y, Xie Y (2020) S or N-monodoping and S, N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation. Electrochim Acta 340:135950

    CAS  Article  Google Scholar 

  39. 39

    Xie Y, Wang Y (2020) Electronic structure and electrochemical performance of CoS2/MoS2 nanosheet composite: simulation calculation and experimental investigation. Electrochim Acta 364:137224

    CAS  Article  Google Scholar 

  40. 40

    Wang Y, Xie Y (2020) Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor. J Alloys Compd 824:153936

    CAS  Article  Google Scholar 

  41. 41

    Kim M, Lee C, Jang J (2014) Fabrication of highly flexible, scalable, and highperformance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater 24:2489–2499

    CAS  Article  Google Scholar 

  42. 42

    Zhang Y, Duan Y, Liu J, Ma G, Huang M (2018) Wormlike acid-doped polyaniline: controllable electrical properties and theoretical investigation. J Phys Chem C 122:2032–2040

    CAS  Article  Google Scholar 

  43. 43

    Yu N, Zhu M-Q, Chen D (2015) Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes. J Mater Chem A 3:7910–7918

    CAS  Article  Google Scholar 

  44. 44

    He Y, Wang X, Huang H, Zhang P, Chen B, Guo Z (2019) In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor. Appl Surf Sci 469:446–455

    CAS  Article  Google Scholar 

  45. 45

    Patnaik S, Das KK, Mohanty A, Parida K (2018) Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4 /ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal Today 315:52–66

    CAS  Article  Google Scholar 

  46. 46

    Oh J, Kim YK, Lee JS, Jang J (2019) Highly porous structured polyaniline nanocomposites for scalable and flexible high-performance supercapacitors. Nanoscale 11:6462–6470

    CAS  Article  Google Scholar 

  47. 47

    Zhu M, Meng W, Huang Y, Huang Y, Zhi C (2014) Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl Mater Interfaces 6:18901–18910

    CAS  Article  Google Scholar 

  48. 48

    Chakraborty I, Chakrabarty N, Senapati A, Chakraborty AK (2018) CuO@NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor. J Phys Chem C 122:27180–27190

    CAS  Article  Google Scholar 

  49. 49

    Golikand AN, Bagherzadeh M, Shirazi Z (2017) Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim Acta 247:116–124

    CAS  Article  Google Scholar 

  50. 50

    Ghosh D, Giri S, Mandal A, Das CK (2013) H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: superior electrode material for supercapacitor application. Appl Surf Sci 276:120–128

    CAS  Article  Google Scholar 

  51. 51

    Ansari SA, Parveen N, Han TH, Ansari MO, Cho MH (2016) Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys Chem Chem Phys 18:9053–9060

    CAS  Article  Google Scholar 

  52. 52

    Arsalani N, Tabrizi AG, Ghadimi LS (2018) Novel PANI/MnFe2O4 nanocomposite for low-cost supercapacitors with high rate capability. J Mater Sci Mater Electron 29:6077–6085

    CAS  Article  Google Scholar 

  53. 53

    Babu RS, Ferreira de Barros AL, Maier MdA, Sampaio DdM, Balamurugan J, Lee JH (2018) Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors. Compos Part B-Eng 143:141–147

    CAS  Article  Google Scholar 

  54. 54

    Chen Y, Li J, Zhang X, Xu H (2018) Effects of transition metal ions on the electrochemical performance of polypyrrole electrode. J Mater Sci Mater Electron 29:11020–11029

    CAS  Article  Google Scholar 

  55. 55

    Wu L, Hao L, Pang B, Wang G, Zhang Y, Li X (2017) MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. J Mater Chem A 5:4629–4637

    CAS  Article  Google Scholar 

  56. 56

    Zhang L, Huang D, Hu N et al (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8

    CAS  Article  Google Scholar 

  57. 57

    Cheng Q, Tao K, Han X et al (2019) Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans 48:4119–4123

    CAS  Article  Google Scholar 

  58. 58

    Hekmat F, Shahrokhian S, Taghavinia N (2018) Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J Phys Chem C 122:27156–27168

    CAS  Article  Google Scholar 

  59. 59

    Zhou Q, Wei T, Yue J, Sheng L, Fan Z (2018) Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors. Electrochim Acta 291:234–241

    CAS  Article  Google Scholar 

  60. 60

    Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583

    Article  CAS  Google Scholar 

  61. 61

    Mirghni AA, Momodu D, Oyedotun KO, Dangbegnon JK, Manyala N (2018) Electrochemical analysis of Co3(PO4)2·4H2O/graphene foam composite for enhanced capacity and long cycle life hybrid asymmetric capacitors. Electrochim Acta 283:374–384

    CAS  Article  Google Scholar 

Download references


The work was supported by Fundamental Research Funds for the Central Universities (2242018K41024) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information



Corresponding author

Correspondence to Yibing Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Chen, Y. Experimental and computational investigation of Cu–N coordination bond strengthened polyaniline for stable energy storage. J Mater Sci (2021). https://doi.org/10.1007/s10853-021-05920-3

Download citation