Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives

Abstract

Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, i.e., cell death, proliferation and differentiation. Redox modulation could have significant implications providing an opportunity for the development of new strategies to improve clinical therapeutic outcomes in the treatment of diabetes, hypertension, atherosclerosis, carcinogenesis, aging and infections. Here, we report a versatile synthetic method to produce three polyethylene glycol (PEG)-based nanocomposite hydrogels containing different graphene derivatives homogeneously distributed: graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNP) by free-radical redox polymerization. The graphene–PEG nanocomposite hydrogels (GCH) were very stable at different pH and solvents. Incorporation of small amount (1% wt) of graphene additives led to enhanced mechanical properties, up to 2.5-fold increase in elastic modulus and higher thermal stability (53–62 °C). The swelling behavior strongly depended on the functionalization of the graphene additive and their interaction with PEG. Interestingly, incorporation of graphene additives conferred antioxidant/pro-oxidant activity to the hydrogel, with their radical scavenging activity depending on the nature of the radical and the graphene derivative. PEG-rGO and PEG-GNP showed the highest scavenging activity for 2,2-Diphenyl-1-picrylhydrazyl radical (DPPH) and hydroxyl radical, respectively. In addition, PEG-rGO demonstrated peroxidase activity in the presence of H2O2. The three GCH proved biocompatible, with no effect on cell viability and proliferation of human bone marrow derived mesenchymal stem cells (hMSC). The results pave the way for the design of bioactive functional nanocomposite hydrogels for ROS-mediated applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Idelchik MDPS, Begley U, Begley TJ, Melendez JA (2017) Mitochondrial ROS control of cancer. Semin Cancer Biol 47:57–66. https://doi.org/10.1016/j.semcancer.2017.04.005

    CAS  Article  Google Scholar 

  2. 2

    Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A (2017) Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 60(3):327–338. https://doi.org/10.1007/s13765-017-0285-9

    CAS  Article  Google Scholar 

  3. 3

    Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS (2015) Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16:25234–25263. https://doi.org/10.3390/ijms161025234

    CAS  Article  Google Scholar 

  4. 4

    Bala A, Mondal C, Haldar PK, Khandelwal B (2017) Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology 25:595–607. https://doi.org/10.1007/s10787-017-0397-1

    CAS  Article  Google Scholar 

  5. 5

    Di Pietro M, Filardo S, Falasca F, Turriziani O, Sessa R (2017) Infectious agents in atherosclerotic cardiovascular diseases through oxidative stress. Int J Mol Sci 18:2459–2473. https://doi.org/10.3390/ijms18112459

    CAS  Article  Google Scholar 

  6. 6

    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    CAS  Article  Google Scholar 

  7. 7

    Mouthuy PA, Snelling SJB, Dakin SG, Milkovic L, Gasparovic AC, Carr AJ, Zarkovic N (2016) Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials 109:55–68. https://doi.org/10.1016/j.biomaterials.2016.09.010

    CAS  Article  Google Scholar 

  8. 8

    Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly. https://doi.org/10.4414/smw.2012.13659

    Article  Google Scholar 

  9. 9

    Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol. https://doi.org/10.1155/2012/936486

    Article  Google Scholar 

  10. 10

    Manda G, Nechifor MT, Neagu TM (2009) Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol 3:342–366. https://doi.org/10.2174/2212796810903010022

    CAS  Article  Google Scholar 

  11. 11

    Topaloglu N, Guney M, Aysan N, Gulsoy M, Yuksel S (2016) The role of reactive oxygen species in the antibacterial photodynamic treatment: photoinactivation vs proliferation. Lett Appl Microbiol 62:230–236. https://doi.org/10.1111/lam.12538

    CAS  Article  Google Scholar 

  12. 12

    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29. https://doi.org/10.1146/annurev.bioeng.2.1.9

    CAS  Article  Google Scholar 

  13. 13

    Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sensor Actuat B-Chem 147:765–774. https://doi.org/10.1016/j.snb.2010.03.083

    CAS  Article  Google Scholar 

  14. 14

    Palmieri V, Papi M, Conti C, Ciasca G, Maulucci G, De Spirito M (2016) The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices 13:1013–1019. https://doi.org/10.1080/17434440.2016.1245612

    CAS  Article  Google Scholar 

  15. 15

    Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF (2019) Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 12:973–990. https://doi.org/10.1007/s12274-019-2300-4

    CAS  Article  Google Scholar 

  16. 16

    Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A (2017) Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cells Nanomed Biotechnol 46:465–471. https://doi.org/10.1080/21691401.2017.1345924

    CAS  Article  Google Scholar 

  17. 17

    Liu W, Zhang X, Zhou L, Shang L, Su Z (2019) Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy. J Colloid Interf Sci 536:160–170. https://doi.org/10.1016/j.jcis.2018.10.050

    CAS  Article  Google Scholar 

  18. 18

    Song HS, Kwon OS, Kim JH, Conde J, Artzi N (2017) 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 89:187–200. https://doi.org/10.1016/j.bios.2016.03.045

    CAS  Article  Google Scholar 

  19. 19

    Song H, Zhang X, Liu Y, Su Z (2019) Developing graphene-based nanohybrids for electrochemical sensing. Chem Rec 19:534–549. https://doi.org/10.1002/tcr.201800084

    CAS  Article  Google Scholar 

  20. 20

    Goeun C, Seon-Wook K, Junggeon P, Junha P, Semin K, Sook KY, Youngkeun A, Da-Woon J, Darren WR, Young LJ (2019) Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225:119513. https://doi.org/10.1016/j.biomaterials.2019.119513

    CAS  Article  Google Scholar 

  21. 21

    Christensen IL, Sun Y-P, Juzenas P (2011) Carbon dots as antioxidants and prooxidants. J Biomed Nanotechnol 7:667–676. https://doi.org/10.1166/jbn.2011.1334

    CAS  Article  Google Scholar 

  22. 22

    Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RH (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755. https://doi.org/10.1039/C4NR03275F

    CAS  Article  Google Scholar 

  23. 23

    Martin C, Merino S, Gonzalez-Dominguez JM, Vazquez E, Prato M, Rauti R, Ballerini L (2017) Graphene improves the biocompatibility of polyacrylamide hydrogels: 3D polymeric scaffolds for neuronal growth. Sci Rep 7:10942. https://doi.org/10.1038/s41598-017-11359-x

    CAS  Article  Google Scholar 

  24. 24

    Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728. https://doi.org/10.2217/nnm.11.19

    CAS  Article  Google Scholar 

  25. 25

    Guo Y, Duan B, Cui L, Zhu P (2015) Construction of chitin/graphene oxide hybrid hydrogels. Cellulose 22:2035–2043. https://doi.org/10.1007/s10570-015-0630-2

    CAS  Article  Google Scholar 

  26. 26

    Cong HP, Wang P, Yu SH (2013) Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem Mater 25:3357–3362. https://doi.org/10.1021/cm401919c

    CAS  Article  Google Scholar 

  27. 27

    Díez-Pascual AM, Díez-Vicente AL (2016) Poly(propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl Mater Inter 8:17902–17914. https://doi.org/10.1021/acsami.6b05635

    CAS  Article  Google Scholar 

  28. 28

    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanonanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    CAS  Article  Google Scholar 

  29. 29

    Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanonanocomposites. J Mater Chem 22:3637–3646. https://doi.org/10.1039/C2JM15062J

    CAS  Article  Google Scholar 

  30. 30

    Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X, Lee C-S, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interf 7:17054–17060. https://doi.org/10.1021/acsami.5b03228

    CAS  Article  Google Scholar 

  31. 31

    Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0

    CAS  Article  Google Scholar 

  32. 32

    Garg B, Bisht T, Ling YC (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules 20:14155–14190. https://doi.org/10.3390/molecules200814155

    CAS  Article  Google Scholar 

  33. 33

    Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin J-J (2016) Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 10:8690–8699. https://doi.org/10.1021/acsnano.6b04061

    CAS  Article  Google Scholar 

  34. 34

    Park J, Kim IY, Patel M, Moon HJ, Hwang SJ, Jeong B (2015) 2D and 3D hybrid systems for enhancement of chondrogenic differentiation of tonsil-derived mesenchymal stem cells. Adv Funct Mater 25:2573–2582. https://doi.org/10.1002/adfm.201500299

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Ms. Eider Begiristain is acknowledged for her precious help in the experimental work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Sánchez-Abella.

Ethics declarations

Conflict of interest

Laura Sánchez-Abella, Virginia Ruiz, Adrián Pérez-San Vicente, Hans-Jürgen Grande, Iraida Loinaz and Damien Dupin declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Maude Jimenez.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9732 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Abella, L., Ruiz, V., Pérez-San Vicente, A. et al. Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives. J Mater Sci (2021). https://doi.org/10.1007/s10853-021-05919-w

Download citation