Extrinsic room-temperature ferromagnetism in MoS2

Abstract

We report stable room-temperature ferromagnetism in commercially available MoS2 powder with a nominal purity greater than 98%. In order to assess the origin of the unexpected ferromagnetic signal, we carried out thorough characterization of the samples, by a combination of X-ray diffraction, Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy and superconducting quantum interference device magnetometry. Using secondary ion mass spectrometry, we infer that up to 1.6% of a pool of different external dopants, including 0.8% of Fe and others, are present in the MoS2 samples. We find very low value of magnetic moment per unit formula that, together with the small density of magnetic dopants, and the room-temperature magnetic order, leads us to conclude that ferromagnetism is not hosted at the MoS2 crystal but can be ascribed to secondary phase of transition metal atoms’ clusters that aggregate. Our results stress the need of a careful characterization of transition metal dichalcogenides in the study of magnetism and spintronics involving either nominally pure MoS2 as a diamagnetic semiconductor substrate or as a host material for diluted magnetic alloying.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805. https://doi.org/10.1103/PhysRevLett.105.136805

    CAS  Article  Google Scholar 

  2. 2

    Molina-Sánchez A, Hummer K, Wirtz L (2015) Vibrational and optical properties of MoS2: From monolayer to bulk. Surf Sci Rep 70:554–586. https://doi.org/10.1016/j.surfrep.2015.10.001

    CAS  Article  Google Scholar 

  3. 3

    Krishnan U, Kaur M, Singh K et al (2019) A synoptic review of MoS 2: Synthesis to applications. Superlattices Microstruct 128:274–297. https://doi.org/10.1016/j.spmi.2019.02.005

    CAS  Article  Google Scholar 

  4. 4

    Xiao D, Liu G-B, Feng W et al (2012) Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys Rev Lett 108:196802. https://doi.org/10.1103/PhysRevLett.108.196802

    CAS  Article  Google Scholar 

  5. 5

    Catarina G, Have J, Fernández-Rossier J, Peres NMR (2019) Optical orientation with linearly polarized light in transition metal dichalcogenides. Phys Rev B 99:125405. https://doi.org/10.1103/PhysRevB.99.125405

    CAS  Article  Google Scholar 

  6. 6

    Xu X, Yao W, Xiao D, Heinz TF (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350. https://doi.org/10.1038/nphys2942

    CAS  Article  Google Scholar 

  7. 7

    Kośmider K, González JW, Fernández-Rossier J (2013) Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys Rev B Condens Matter Mater Phys 88:245436. https://doi.org/10.1103/PhysRevB.88.245436

    CAS  Article  Google Scholar 

  8. 8

    Mak KF, Shan J, Ralph DC (2019) Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys 1:646–661. https://doi.org/10.1038/s42254-019-0110-y

    Article  Google Scholar 

  9. 9

    Gibertini M, Koperski M, Morpurgo AF, Novoselov KS (2019) Magnetic 2D materials and heterostructures. Nat Nanotechnol 14:408–419. https://doi.org/10.1038/s41565-019-0438-6

    CAS  Article  Google Scholar 

  10. 10

    Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273. https://doi.org/10.1038/nature22391

    CAS  Article  Google Scholar 

  11. 11

    Zhang WB, Qu Q, Zhu P, Lam CH (2015) Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C 3:12457–12468. https://doi.org/10.1039/c5tc02840j

    CAS  Article  Google Scholar 

  12. 12

    Lado JL, Fernández-Rossier J (2017) On the origin of magnetic anisotropy in two dimensional CrI 3. 2D Mater 4:35002. https://doi.org/10.1088/2053-1583/aa75ed

    CAS  Article  Google Scholar 

  13. 13

    Gong C, Li L, Li Z et al (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269. https://doi.org/10.1038/nature22060

    CAS  Article  Google Scholar 

  14. 14

    Song T, Cai X, Tu MWY, et al (2018) Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science (80-) 360:1214–1218. https://doi.org/https://doi.org/10.1126/science.aar4851

  15. 15

    Kong T, Stolze K, Timmons EI et al (2019) VI 3 —a New Layered Ferromagnetic Semiconductor. Adv Mater 31:1–7. https://doi.org/10.1002/adma.201808074

    CAS  Article  Google Scholar 

  16. 16

    Freitas DC, Weht R, Sulpice A et al (2015) Ferromagnetism in layered metastable 1T-CrTe2. J Phys Condens Matter 27:176002. https://doi.org/10.1088/0953-8984/27/17/176002

    CAS  Article  Google Scholar 

  17. 17

    Ahn EC (2020) 2D materials for spintronic devices. npj 2D Mater Appl 4:1–14. https://doi.org/10.1038/s41699-020-0152-0

    CAS  Article  Google Scholar 

  18. 18

    Samarth N, Furdyna JK (1988) Diluted Magnetic Semiconductors. MRS Bull 13:32–36. https://doi.org/10.1557/S0883769400065477

    CAS  Article  Google Scholar 

  19. 19

    Ohno H, Shen A, Matsukura F et al (1996) (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365. https://doi.org/10.1063/1.118061

    CAS  Article  Google Scholar 

  20. 20

    MacDonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202. https://doi.org/10.1038/nmat1325

    CAS  Article  Google Scholar 

  21. 21

    Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys 86:187–251. https://doi.org/10.1103/RevModPhys.86.187

    CAS  Article  Google Scholar 

  22. 22

    Wolf SA, Awschalom DD, Buhrman RA, et al (2001) Spintronics: A spin-based electronics vision for the future. Science (80- ) 294:1488–1495. https://doi.org/https://doi.org/10.1126/science.1065389

  23. 23

    Han W (2016) Perspectives for spintronics in 2D materials. APL Mater 4:32401. https://doi.org/10.1063/1.4941712

    CAS  Article  Google Scholar 

  24. 24

    Tongay S, Varnoosfaderani SS, Appleton BR et al (2012) Magnetic properties of MoS 2: Existence of ferromagnetism. Appl Phys Lett 101:123105. https://doi.org/10.1063/1.4753797

    CAS  Article  Google Scholar 

  25. 25

    Sun B, Li QL, Chen P (2014) Room-temperature ferromagnetism of single-crystalline MoS2 nanowires. Micro Nano Lett 9:468–470. https://doi.org/10.1049/mnl.2014.0201

    Article  Google Scholar 

  26. 26

    Zhang J, Soon JM, Loh KP et al (2007) Magnetic molybdenum disulfide nanosheet films. Nano Lett 7:2370–2376. https://doi.org/10.1021/nl071016r

    CAS  Article  Google Scholar 

  27. 27

    Shidpour R, Manteghian M (2010) A density functional study of strong local magnetism creation on MoS 2 nanoribbon by sulfur vacancy. Nanoscale 2:1429–1435. https://doi.org/10.1039/b9nr00368a

    CAS  Article  Google Scholar 

  28. 28

    Xu W, Yan S, Qiao W (2018) Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Adv 8:8435–8441. https://doi.org/10.1039/c7ra10304b

    CAS  Article  Google Scholar 

  29. 29

    Cai L, He J, Liu Q et al (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622–2627. https://doi.org/10.1021/ja5120908

    CAS  Article  Google Scholar 

  30. 30

    Lin X, Ni J (2014) Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. J Appl Phys 116:44311. https://doi.org/10.1063/1.4891495

    CAS  Article  Google Scholar 

  31. 31

    Fan XL, An YR, Guo WJ (2016) Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res Lett 11:1–10. https://doi.org/10.1186/s11671-016-1376-y

    CAS  Article  Google Scholar 

  32. 32

    Mishra R, Zhou W, Pennycook SJ et al (2013) Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B Condens Matter Mater Phys 88:144409. https://doi.org/10.1103/PhysRevB.88.144409

    CAS  Article  Google Scholar 

  33. 33

    Li Q, Zhao X, Deng L et al (2020) Enhanced valley zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 14:4636–4645. https://doi.org/10.1021/acsnano.0c00291

    CAS  Article  Google Scholar 

  34. 34

    Song B, Yun SJ, Jiang J, et al (2020) Evidence of itinerant holes for long-range magnetic order in tungsten diselenide semiconductor with vanadium dopants. 1–19

  35. 35

    Jimenez VO, Pham YTH, Liu M, et al (2020) Light-controlled room temperature ferromagnetism in vanadium-doped tungsten diselenide semiconducting monolayers. 1–21

  36. 36

    Pham YTH, Liu M, Jimenez VO, et al (2020) Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-doped Tungsten Diselenide Monolayers at Room Temperature

  37. 37

    Zhang F, Zheng B, Sebastian A, et al (2020) Monolayer Vanadium-doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor. 1–38

  38. 38

    Guguchia Z, Kerelsky A, Edelberg D et al (2018) Magnetism in semiconducting molybdenum dichalcogenides. Sci Adv 4:1–9. https://doi.org/10.1126/sciadv.aat3672

    CAS  Article  Google Scholar 

  39. 39

    Suh J, Park TE, Lin DY et al (2014) Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett 14:6976–6982. https://doi.org/10.1021/nl503251h

    CAS  Article  Google Scholar 

  40. 40

    Hallam T, Monaghan S, Gity F et al (2017) Rhenium-doped MoS2 films. Appl Phys Lett 111:203101. https://doi.org/10.1063/1.4995220

    CAS  Article  Google Scholar 

  41. 41

    Sigiro M, Huang YS, Ho CH et al (2015) Influence of rhenium on the structural and optical properties of molybdenum disulfide. Jpn J Appl Phys 54:6. https://doi.org/10.7567/JJAP.54.04DH05

    CAS  Article  Google Scholar 

  42. 42

    Ko TS, Chen ZW, Lin DY et al (2017) Observation of persistent photoconductivity in Ni-doped MoS2. Jpn J Appl Phys 56:4–8. https://doi.org/10.7567/JJAP.56.04CP09

    Article  Google Scholar 

  43. 43

    Kao CW, Yang CC, Kao HC et al (2018) Role of Fe-doping effect in 2-D MoS2 magnetic semiconductor. IEEE Trans Magn 54:2018–2020. https://doi.org/10.1109/TMAG.2018.2829267

    Article  Google Scholar 

  44. 44

    Singh MK, Chettri P, Tripathi A et al (2018) Defect mediated magnetic transitions in Fe and Mn doped MoS2. Phys Chem Chem Phys 20:15817–15823. https://doi.org/10.1039/c8cp02882f

    CAS  Article  Google Scholar 

  45. 45

    Ahmed S, Ding X, Bao N et al (2017) Inducing high coercivity in MoS2 nanosheets by transition element doping. Chem Mater 29:9066–9074. https://doi.org/10.1021/acs.chemmater.7b02593

    CAS  Article  Google Scholar 

  46. 46

    Zhou J, Lin J, Sims H et al (2020) Synthesis of Co-Doped MoS2 monolayers with enhanced valley splitting. Adv Mater 32:1–8. https://doi.org/10.1002/adma.201906536

    CAS  Article  Google Scholar 

  47. 47

    Fu S, Kang K, Shayan K et al (2020) Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat Commun 11:2034. https://doi.org/10.1038/s41467-020-15877-7

    CAS  Article  Google Scholar 

  48. 48

    Matsubayashi K, Maki M, Moriwaka T et al (2003) Extrinsic origin of high-temperature ferromagnetism in CaB6. J Phys Soc Japan 72:2097–2102. https://doi.org/10.1143/JPSJ.72.2097

    CAS  Article  Google Scholar 

  49. 49

    Sepioni M, Nair RR, Tsai I-L et al (2012) Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. EPL Europhys Lett 97:47001. https://doi.org/10.1209/0295-5075/97/47001

    CAS  Article  Google Scholar 

  50. 50

    Xia B, Yang Y, Ma J et al (2017) Adjustable ferromagnetic behavior in iron-doped two-dimensional MoS2 multilayer nanosheets. Appl Phys Express 10:093002. https://doi.org/10.7567/APEX.10.093002

    Article  Google Scholar 

  51. 51

    Wang Y, Li S, Yi J (2016) Electronic and magnetic properties of Co doped MoS2 monolayer. Sci Rep 6:1–9. https://doi.org/10.1038/srep24153

    CAS  Article  Google Scholar 

  52. 52

    Dietl T, Ohno H, Matsukura F, et al (2000) Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science (80- ) 287:1019–1022. https://doi.org/https://doi.org/10.1126/science.287.5455.1019

  53. 53

    Bonilla M, Kolekar S, Ma Y et al (2018) Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol 13:289–293. https://doi.org/10.1038/s41565-018-0063-9

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the FCT-UT Austin project “Two dimensional magnetic semiconductors (2DMS): UTAPEXPL/NTec/0046/2017” for support of this research. One of the authors SS would like to thank DMRL, DRDO, Govt. of India, for granting permission to carry out this research work. The authors would like to acknowledge the SIMS characterization, carried out by Dr. Carmen Serra Rodríguez at C.A.C.T.I., University of Vigo, Spain. SS would also like to thank Dr. Jérôme Borme for useful discussions on XRD of the samples.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sabyasachi Saha or Francis Leonard Deepak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 978 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Bañobre-López, M., Bondarchuk, O. et al. Extrinsic room-temperature ferromagnetism in MoS2. J Mater Sci 56, 9692–9701 (2021). https://doi.org/10.1007/s10853-021-05916-z

Download citation