Preparation of polyvinylidene fluoride modified membrane by tannin and halloysite nanotubes for dyes and antibiotics removal


Separation of dyes and antibiotics is particularly important in wastewater treatment. In this work, the hydrophilic modified polyvinylidene fluoride (PVDF) membranes were prepared by deposition of halloysite nanotubes (HNTs), tannic acid (TA) and ferric chloride (FeCl3). The surface morphology of the modified membranes was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the chemical compositions of the membrane. The measurements of water contact angle (CA) and pure water flux (Jw) show that the PVDF membrane has excellent permeability and hydrophilicity. The PVDF modified membrane has good separation performance for dyes, and the rejection ratios of methyl orange, methylene blue and rhodamine B were 98.2%, 94.6% and 96.9%, respectively. In addition, the rejection ratios of modified membrane for tetracyclines and bisphenol A were significantly improved. Most important of all, the TA-Fe(III)/HNTs/PVDF membrane has excellent antifouling performance after cycles tests. These results indicate that the TA-Fe(III)/HNTs/PVDF modified membranes have a great application prospect in dye and antibiotic wastewater treatment.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12


  1. 1

    Hashino M, Katagiri T, Kubota N, Ohmukai Y, Maruyama T, Matsuyama H (2011) Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate. J Membr Sci 366:389–397

    CAS  Google Scholar 

  2. 2

    Wang Z, Zhang P, Hu F, Zhao Y, Zhu L (2017) A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohyd Polym 177:224–231

    CAS  Google Scholar 

  3. 3

    Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    CAS  Google Scholar 

  4. 4

    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  Google Scholar 

  5. 5

    Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. Npg Asia Mater 6:101–121

    Google Scholar 

  6. 6

    Kangn GD, Cao YM (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes-a review. J Membr Sci 63:145–165

    Google Scholar 

  7. 7

    Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM (2015) Crystalline polymorphism in poly (vinylidenefluoride) membranes. Prog Polym Sci 51:94–126

    CAS  Google Scholar 

  8. 8

    Zhang Y, Wang J, Gao F, Chen Y, Zhang H (2016) A comparison study: the different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes. Water Res 109:227–236

    Google Scholar 

  9. 9

    Liu J, Shen X, Zhao Y, Chen L (2013) Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind Eng Chem Res 52:18392–18400

    CAS  Google Scholar 

  10. 10

    Mishra S, Singh AK, Singh JK (2020) Ferrous sulfide and carboxyl-functionalized ferroferric oxide incorporated PVDF-based nanocomposite membranes for simultaneous removal of highly toxic heavy-metal ions from industrial ground water. J Mater Sci 593:117422–117426.

    CAS  Article  Google Scholar 

  11. 11

    Zhao S, Wang Z (2017) A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J Membr Sci 524:214–224

    CAS  Google Scholar 

  12. 12

    Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    CAS  Google Scholar 

  13. 13

    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    CAS  Google Scholar 

  14. 14

    Xu YC, Tang YP, Liu LF, Guo ZH, Shao L (2017) Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. J Membr Sci 526:32–42

    CAS  Google Scholar 

  15. 15

    Gao S, Sun J, Liu P, Zhang F, Zhang W, Yuan S, Li J, Jin J (2016) A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Adv Mater 28:5307–5314

    CAS  Google Scholar 

  16. 16

    Barrett DG, Sileika TS, Messersmith PB (2014) Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chem Commun 50:7265–7268

    CAS  Google Scholar 

  17. 17

    Ferreira D, Gross GG, Hagerman AE (2008) Tannins and related polyphenols: perspectives on their chemistry, biology, ecological effects, and human health protection. Phytochemistry 69:3006–3008

    CAS  Google Scholar 

  18. 18

    Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arabian J Chem 3:43–53

    CAS  Google Scholar 

  19. 19

    Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5:603–607

    CAS  Google Scholar 

  20. 20

    Sileika TS, Barrett DG, Zhang R, Lau HKA, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed 52:10766–10770

    CAS  Google Scholar 

  21. 21

    Cui Z, Hassankiadeh NT, Lee SY (2013) Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J Membr Sci 444:223–236

    CAS  Google Scholar 

  22. 22

    Chakrabarty T, Pérez-Manríquez L, Neelakanda P, Peinemann KV (2017) Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes. Sep Purif Technol 184:188–194

    CAS  Google Scholar 

  23. 23

    Zhang Y, Yu L, Wang H, Zhang B, Liu J (2016) Recent advances in halloysite nanotube derived composites for water treatment. Environ Sci 3:28–44

    Google Scholar 

  24. 24

    He Q, Yang D, Deng X, Wu Q, Li R, Zhai Y, Zhang L (2013) Preparation, characterization and application of N-2-Pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb(II). Water Res 47:3976–3983

    CAS  Google Scholar 

  25. 25

    Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    CAS  Google Scholar 

  26. 26

    Zhang R, Zhu XY, Liu Y, Cai YF, Han Q, Zhang TQ (2019) The application of halloysite nanotubes/Fe3O4 composites nanoparticles in polyvinylidene fluoride membranes for dye solution removal. J Inorg Organomet P 29:1625–1636

    CAS  Google Scholar 

  27. 27

    Madaeni SS, Zinadini S, Vatanpour V (2013) Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 111:98–107

    CAS  Google Scholar 

  28. 28

    Xu RZ, Wang JT, Chen DD, Liu TY, Zheng Z, Yang F, Chen JY, Kang J, Cao Y, Xiang M (2020) Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes. J Mater Sci 595:117472–117483.

    CAS  Article  Google Scholar 

  29. 29

    Shi Y, Liu J, Zhuo L, Yan X, Cai F, Luo W (2020) Antibiotics in wastewater from multiple sources and surface water of the Yangtze River in Chongqing in China. Environ Monit Assess 192:1–13

    Google Scholar 

  30. 30

    Wang Z, Shao D, Westerhoff P (2017) Wastewater discharge impact on drinking water sources along the Yangtze River (China). Sci Total Environ 599–600:1399–1407

    Google Scholar 

  31. 31

    Zhang R, Liu Y, Li Y, Han Q, Zhang TQ, Zeng KL, Zhao C (2020) Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal. J Mater Sci 55:389–403.

    CAS  Article  Google Scholar 

  32. 32

    Wang KY, Chung TS, Gryta M (2008) Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem Eng Sci 63:2587–2594

    CAS  Google Scholar 

  33. 33

    Teyssedre G, Bernes A, Lacabanne C (1993) Influence of the crystalline phase on the molecular mobility of PVDF. J Polym Sci Pol Phys 31:2027–2034

    CAS  Google Scholar 

  34. 34

    Luo C, Liu Q (2017) Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. Acs Appl Mater Inter 9:8297–8307

    CAS  Google Scholar 

  35. 35

    Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z (2015) Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. Rsc Advances 5:13470–13477

    CAS  Google Scholar 

  36. 36

    Zhang Y, Xie Y, Tang A, Zhou Y, Yang H (2014) Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes. Ind Eng Chem Res 53:5507–5514

    CAS  Google Scholar 

  37. 37

    Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168:959–963

    CAS  Google Scholar 

  38. 38

    Kim HJ, Kim DG, Yoon H, Choi YS, Yoon J, Lee JC (2015) Polyphenol/Fe\r, III\r, complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Adv Mater Interfaces 2:1500298–1500306

    Google Scholar 

  39. 39

    Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly (dopamine). Chem Sci 4:3796–3802

    CAS  Google Scholar 

  40. 40

    Xuan Y, Jiang G, Li Y, Wang J, Geng H (2013) Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloid Surf A 422:50–60

    CAS  Google Scholar 

  41. 41

    Hegab HM, Elmekawy A, Barclay TG, Michelmore A, Zou L, Saint CP (2016) Single-step assembly of multifunctional poly (tannic acid)-graphene oxide coating to reduce biofouling of forward osmosis membranes. Acs Appl Mater Inter 8:17519–17528

    CAS  Google Scholar 

  42. 42

    Yu L, Wang HX, Zhang YT, Zhang B, Liu JD (2016) Recent advances in halloysite nanotube derived composites for water treatment. Environ Sci Nano 3:28–44

    CAS  Google Scholar 

  43. 43

    Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    CAS  Google Scholar 

  44. 44

    Sun H, Yang X, Zhang Y, Cheng X, Xu Y, Bai Y (2018) Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. J Membr Sci 563:22–30

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, Y., Li, Y. et al. Preparation of polyvinylidene fluoride modified membrane by tannin and halloysite nanotubes for dyes and antibiotics removal. J Mater Sci 56, 10218–10230 (2021).

Download citation