Skip to main content

Advertisement

Log in

Fabricating 2D/2D/2D heterojunction of graphene oxide mediated g-C3N4 and ZnV2O6 composite with kinetic modelling for photocatalytic CO2 reduction to fuels under UV and visible light

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two dimensional (2D) reduced-graphene-oxide/g-C3N4 modified 2D ZnV2O6 heterojunction for enhanced photocatalytic CO2 reduction has been investigated. The catalysts were fabricated using one-pot solvothermal method and were tested in a fixed-bed reactor under visible and UV-light. The ZnV2O6/RGO/g-C3N4 composite catalyst demonstrated excellent photoactivity for CO2 reduction to CO and hydrocarbons under visible light. The maximum CO yield rate of 2802.9 μmol g−1 h−1 was obtained over the composite, which is 7.4 and 1.7 times higher than using g-C3N4 and ZnV2O6, respectively. The improved activity attributing to synergistic effect of 2D layer heterojunction with enhanced charges separation by RGO mediator under visible light. Comparatively, 2 times lower productivity was obtained under UV-light than visible-light due to higher visible-light absorption. The time-dependent kinetic-model was further developed to understand the influence of photocatalytic oxidation and reduction processes on the reaction chemistry. The model is based on Langmuir–Hinshelwood (L–H) mechanism to understand the formation rates of products during photocatalytic CO2 conversion with water vapours. Kinetic reveals surface reaction is a rate limiting step, which depends on the generation of charge carrier with higher light absorption. The findings from the experimental and kinetic-model would be useful to understand photo-catalytic reaction engineering in solar energy applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Tahir M, Tahir B (2020) 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125868

    Article  Google Scholar 

  2. Tahir M (2020) Enhanced photocatalytic CO2 reduction to fuels through bireforming of methane over structured 3D MAX Ti3AlC2/TiO2 heterojunction in a monolith photoreactor. J CO2Util 38:99–112. https://doi.org/10.1016/j.jcou.2020.01.009

    Article  CAS  Google Scholar 

  3. Bafaqeer A, Tahir M, Amin NAS (2018) Synergistic effects of 2D/2D ZnV2O6/RGO nanosheets heterojunction for stable and high performance photo-induced CO2 reduction to solar fuels. Chem Eng J 334:2142–2153

    Article  CAS  Google Scholar 

  4. Yadav RK, Kumar A, Yadav D, Park NJ, Kim JY, Baeg JO (2018) In situ prepared flexible 3D polymer film photocatalyst for highly selective solar fuel production from CO2. Chem Cat Chem 10:2024–2029

    CAS  Google Scholar 

  5. Kumar A, Prajapati PK, Pal U, Jain SL (2018) A ternary rGO/InVO4/Fe2O3 Z-scheme heterostructured photocatalyst for CO2 reduction under visible light irradiation. ACS Sustain Chem Eng 6(7):820–8211

    Google Scholar 

  6. Chakrabortty S, Nayak J, Ruj B, Pal P, Kumar R, Banerjee S et al (2020) Photocatalytic conversion of CO2 to methanol using membrane-integrated green approach: a review on capture, conversion and purification. J Environ Chem Eng 8:103935. https://doi.org/10.1016/j.jece.2020.103935

    Article  CAS  Google Scholar 

  7. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  8. Tahir M, Tahir B, Amin NAS, Muhammad A (2016) Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Convers Manage 119:368–378

    Article  CAS  Google Scholar 

  9. She H, Wang Y, Zhou H, Li Y, Wang L, Huang J et al (2019) Preparation of Zn3In2S6/TiO2 for enhanced CO2 photocatalytic reduction activity via Z-scheme electron transfer. Chem Cat Chem 11:753–759

    CAS  Google Scholar 

  10. Nie N, He F, Zhang L, Cheng B (2018) Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Appl Surf Sci 457:1096–1102

    Article  CAS  Google Scholar 

  11. Ding S, Han M, Dai Y, Yang S, Mao D, He H et al (2019) Synthesis of Ag/AgBr/Bi4O5Br2 plasmonic heterojunction photocatalysts: elevated visible-light photocatalytic performance and Z-scheme mechanism. Chem Cat Chem 11:3490–3504

    CAS  Google Scholar 

  12. Zhang Y, Sun K, Wu D, Xie W, Xie F, Zhao X et al (2019) Localized surface plasmon resonance enhanced photocatalytic activity via MoO2/BiOBr nanohybrids under visible and NIR light. Chem Cat Chem 11:2546–2553

    CAS  Google Scholar 

  13. Umer M, Tahir M, Usman Azam M, Tasleem S, Abbas T, Muhammad A (2019) Synergistic effects of single/multi-walls carbon nanotubes in TiO2 and process optimization using response surface methodology for photo-catalytic H2 evolution. J Environ Chem Eng 7:103361. https://doi.org/10.1016/j.jece.2019.103361

    Article  CAS  Google Scholar 

  14. Khatun F, Abd Aziz A, Sim LC, Monir MU (2018) Plasmonic enhanced Au decorated TiO2 nanotube arrays as a visible light active catalyst towards photocatalytic CO2 conversion to CH4. J Environ Chem Eng 7:103233. https://doi.org/10.1016/j.jece.2019.103233

    Article  CAS  Google Scholar 

  15. Fu J, Yu J, Jiang C, Cheng B (2018) g-C3N4-Based Heterostructured photocatalysts. Adv Energy Mater 8:1701503

    Article  CAS  Google Scholar 

  16. Tahir B, Tahir M, Amin NAS (2019) Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane. Appl Surf Sci 493:18–31

    Article  CAS  Google Scholar 

  17. Ghafoor S, Inayat A, Aftab F, Duran H, Kirchhoff K, Waseem S et al (2019) TiO2 nanofibers embedded with g-C3N4 nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation. J Environ Chem Eng 7:103452. https://doi.org/10.1016/j.jece.2019.103452

    Article  CAS  Google Scholar 

  18. Liang M, Borjigin T, Zhang Y, Liu B, Liu H, Guo H (2019) Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl Catal B 243:566–575

    Article  CAS  Google Scholar 

  19. Liu C, Huang H, Ye L, Yu S, Tian N, Du X et al (2017) Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. Nano Energy 41:738–748

    Article  CAS  Google Scholar 

  20. Bajiri MA, Hezam A, Namratha K, Viswanath R, Drmosh QA, Bhojya Naik HS et al (2019) CuO/ZnO/g-C3N4 heterostructures as efficient visible light-driven photocatalysts. J Environ Chem Eng 7:103412. https://doi.org/10.1016/j.jece.2019.103412

    Article  CAS  Google Scholar 

  21. Jiang D, Xiao P, Shao L, Li D, Chen M (2017) RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. Ind Eng Chem Res 56:8823–8832

    Article  CAS  Google Scholar 

  22. Shanmugam V, Sanjeevamuthu S, Jeyaperumal KS, Vairamuthu R (2019) Fabrication of heterostructured vanadium modified g-C3N4/TiO2 hybrid photocatalyst for improved photocatalytic performance under visible light exposure and antibacterial activities. J Indust Eng Chem 76:318–332

    Article  CAS  Google Scholar 

  23. Fajrina N, Tahir M (2019) Engineering approach in stimulating photocatalytic H2 production in a slurry and monolithic photoreactor systems using Ag-bridged Z-scheme pCN/TiO2 nanocomposite. Chem Eng J 374:1076–1095

    Article  CAS  Google Scholar 

  24. Nie N, Zhang L, Fu J, Cheng B, Yu J (2018) Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl Surf Sci 441:12–22

    Article  CAS  Google Scholar 

  25. Ohno T, Murakami N, Koyanagi T, Yang Y (2014) Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J CO2 Util 6:17–25

    Article  CAS  Google Scholar 

  26. Wang M, Shen M, Zhang L, Tian J, Jin X, Zhou Y et al (2017) 2D–2D MnO2/g-C3N4 heterojunction photocatalyst: in-situ synthesis and enhanced CO2 reduction activity. Carbon 120:23–31

    Article  CAS  Google Scholar 

  27. Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S (2018) g-C3N4/NiAl-LDH 2D/2D Hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl Mater Interfaces 10:2667–2678

    Article  CAS  Google Scholar 

  28. Di T, Zhu B, Cheng B, Yu J, Xu J (2017) A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal 352:532–541

    Article  CAS  Google Scholar 

  29. Bafaqeer A, Tahir M, Amin NAS (2019) Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Appl Catal B 242:312–326

    Article  CAS  Google Scholar 

  30. Xu D, Cheng B, Wang W, Jiang C, Yu J (2018) Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B 231:368–380

    Article  CAS  Google Scholar 

  31. Bao Y, Chen K (2018) Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism. Appl Surf Sci 437:51–61

    Article  CAS  Google Scholar 

  32. Jo W-K, Kumar S, Eslava S, Tonda S (2018) Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl Catal B 239:586–598

    Article  CAS  Google Scholar 

  33. Xue W, Hu X, Liu E, Fan J (2018) Novel reduced graphene oxide-supported Cd 0.5 Zn0.5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution. Appl Surf Sci 447:783–794

    Article  CAS  Google Scholar 

  34. Wang C, Wang G, Zhang X, Dong X, Ma C, Zhang X et al (2018) Construction of g-C3N4 and FeWO4 Z-scheme photocatalyst: effect of contact ways on the photocatalytic performance. RSC Advances 8:18419–18426

    Article  CAS  Google Scholar 

  35. Bafaqeer A, Tahir M, Amin NAS (2018) Synthesis of hierarchical ZnV2O6 nanosheets with enhanced activity and stability for visible light driven CO2 reduction to solar fuels. Appl Surf Sci 435:953–962

    Article  CAS  Google Scholar 

  36. Koci K, Obalova L, Solcova O (2010) Kinetic study of photocatalytic reduction of CO2 over TiO2. Chem Process Eng 31:395–407

    CAS  Google Scholar 

  37. Davis ME, Davis RJ (2012) Fundamentals of chemical reaction engineering: Courier Corporation

  38. Tan SS, Zou L, Hu E (2008) Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour. Catal Today 131:125–129

    Article  CAS  Google Scholar 

  39. Yin Z, Qin J, Wang W, Cao M (2017) Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy 31:367–376

    Article  CAS  Google Scholar 

  40. Zhang T, Shen Y, Qiu Y, Liu Y, Xiong R, Shi J et al (2017) Facial synthesis and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers. ACS Sustain Chem Eng 5:4630–4636

    Article  CAS  Google Scholar 

  41. Lv H, Wu X, Liu Y, Cao Y, Ren H (2019) In situ synthesis of ternary Zn0.5Cd0.5S (0D)/RGO (2D)/g-C3N4 (2D) heterostructures with efficient photocatalytic H2 generation activity. Mater Lett 236:690–693

    Article  CAS  Google Scholar 

  42. Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770

    Article  CAS  Google Scholar 

  43. Cao Y, Zhang Z, Long J, Liang J, Lin H, Lin H et al (2014) Vacuum heat-treatment of carbon nitride for enhancing photocatalytic hydrogen evolution. J Mater Chem A 2:17797–17807

    Article  CAS  Google Scholar 

  44. Ma D, Wu J, Gao M, Xin Y, Ma T, Sun Y (2016) Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem Eng J 290:136–146

    Article  CAS  Google Scholar 

  45. Shahid M, Liu J, Ali Z, Shakir I, Warsi MF (2013) Structural and electrochemical properties of single crystalline MoV2O8 nanowires for energy storage devices. J Power Sources 230:277–281

    Article  CAS  Google Scholar 

  46. Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Unusual formation of ZnCo2O4 3D Hierarchical twin microspheres as a high-rate and ultralong-life Lithium-Ion battery anode material. Adv Funct Mater 24:3012–3020

    Article  CAS  Google Scholar 

  47. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363

    Article  CAS  Google Scholar 

  48. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H 2 evolution activity. J Mater Chem A 2:18924–18928

    Article  CAS  Google Scholar 

  49. Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297

    Article  CAS  Google Scholar 

  50. Yuliati L, Itoh H, Yoshida H (2008) Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem Phys Lett 452:178–182

    Article  CAS  Google Scholar 

  51. László B, Baán K, Varga E, Oszkó A, Erdőhelyi A, Kónya Z et al (2016) Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B 199:473–484

    Article  CAS  Google Scholar 

  52. Truc NTT, Hanh NT, Nguyen MV, Le Chi NTP, Van Noi N, Tran DT et al (2018) Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels. Appl Surf Sci 457:968–974

    Article  CAS  Google Scholar 

  53. Xiong X, Mao C, Yang Z, Zhang Q, Waterhouse GI, Gu L et al (2020) Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv Energy Mater 10:2002928

    Article  CAS  Google Scholar 

  54. Han B, Wei W, Chang L, Cheng P, Hu YH (2016) Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal 6:494–497

    Article  CAS  Google Scholar 

  55. Hu X, Liu X, Tian J, Li Y, Cui H (2017) Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator. Catal Sci Technol 7:4193–4205

    Article  CAS  Google Scholar 

  56. Poznyak SK, Talapin DV, Kulak AI (2001) Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2−In2O3 composite solids and films prepared by Sol−Gel method. J Phys Chem B 105:4816–4823

    Article  CAS  Google Scholar 

  57. Chong S, Wang S, Tadé M, Ang HM, Pareek V (2011) Simulations of photodegradation of toluene and formaldehyde in a monolith reactor using computational fluid dynamics. AIChE J 57:724–734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their deepest appreciation to University Technology Malaysia for financial support of this research under Fundamental Research (UTMFR, Q.J130000.2551.21H66) and Long Term Research Grant Scheme (LRGS, Vot R.J130000.7851.4L900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tahir.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bafaqeer, A., Tahir, M., Amin, N.A.S. et al. Fabricating 2D/2D/2D heterojunction of graphene oxide mediated g-C3N4 and ZnV2O6 composite with kinetic modelling for photocatalytic CO2 reduction to fuels under UV and visible light. J Mater Sci 56, 9985–10007 (2021). https://doi.org/10.1007/s10853-021-05906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05906-1

Navigation