Skip to main content

Advertisement

Log in

Synthesis of NiMoO4@Co3O4 hierarchical nanostructure arrays on reduced graphene oxide/Ni foam as binder-free electrode for asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, substantial attention has been concentrated on the preparation and practical application of complex hierarchical nanostructure composite, which exhibits excellent electrochemical properties compared to the single-structured materials. Hence, a novel electrode of NiMoO4@Co3O4–5H composite nanoarrays supported on reduced graphene oxide/Ni Foam (rGO/NF) was synthesized through the facile hydrothermal method. The composite combines the advantages of the large specific capacitance of NiMoO4 and the great rate capability of Co3O4, exhibiting the distinguished specific capacitance and rate performance. The prepared NiMoO4@Co3O4–5H composite shows an enhanced pseudocapacitive performance of about 1722.3 F g−1 at a current density of 1 A g−1, and eminent rate capability of 80.8% at 10 A g−1. Moreover, the composite delivers good long-term cycling stability with capacitance retention of 91% after 6000 cycles. An asymmetric supercapacitor (ASC) was fabricated using NiMoO4@Co3O4–5H and AC as the positive electrode and negative electrode, achieving the high energy density of 37.1 Wh kg−1 at a power density of 798.0 W kg−1, and exceptional cycling stability (100% retention after 4000 cycles). These consequences suggest that NiMoO4@Co3O4–5H could be considered as a potential electrode material for energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Guo M, Balamurugan J, Kim NH, Lee JH (2018) High-energy solid-state asymmetric supercapacitor based on nickel vanadium oxide/NG and iron vanadium oxide/NG electrodes. Appl Catal B: Environ 239:290–299

    Article  CAS  Google Scholar 

  2. Mondal AK, Su D, Chen S, Ung A, Kim HS, Wang G (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chemistry 21:1526–1532

    Article  CAS  Google Scholar 

  3. Ren L, Hui KS, Hui KN (2013) Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells. J Mater Chem A 1:5689–5694

    Article  CAS  Google Scholar 

  4. Bandyopadhyay P, Saeed G, Kim NH, Lee JH (2020) Zinc–nickel–cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem Eng J 384:123357

    Article  CAS  Google Scholar 

  5. Li Q, Lu W, Li Z, Ning J, Zhong Y, Hu Y (2020) Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem Eng J 380:122544

    Article  CAS  Google Scholar 

  6. Cao LH, Xu ZX, Jiang SH, Xu WH, Gao RR, Hou HQ (2021) Camellia pollen-derived carbon with controllable N content for high-performance supercapacitors by ammonium chloride activation and dual N-doping. ChemNanoMat 7:34–43

    Article  CAS  Google Scholar 

  7. Wang F, Li HL, Duan GG, He SJ, Zhang L, Zhang GY, Zhou ZP, Jiang SH (2020) N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin Chem Lett 31:1986–1990

  8. Chuai M, Zhang K, Chen X, Tong Y, Zhang H, Zhang M (2020) Effect of nondegeneracy on Ni3xCoxS4 for high performance supercapacitor. Chem Eng J 381:122682

    Article  CAS  Google Scholar 

  9. Xin N, Liu Y, Niu H, Bai H, Shi W (2020) In-situ construction of metal organic frameworks derived Co/Zn–S sandwiched graphene film as free-standing electrodes for ultra-high energy density supercapacitors. J Power Sources 451:227772

    Article  CAS  Google Scholar 

  10. Yin X, Li H, Fu Y, Yuan R, Lu J (2020) Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem Eng J 392:124820

    Article  CAS  Google Scholar 

  11. Dong D (2019) Ternary composite MnO2@MoS2/polypyrrole from in-situ synthesis for binder-free and flexible supercapacitor. J Bioresour Bioprod 4:242–250

    CAS  Google Scholar 

  12. Zhang LS, Miao Y, Fan W, Liu TX (2020) Hierarchical composites of NiCo2S4 nanorods grown on carbon nanofibers as anodes for high-performance lithium ion batteries. Compos Commun 21:100395

    Article  Google Scholar 

  13. Zhou S, Wang S, Zhou S et al (2020) An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 12:8934–8941

    Article  CAS  Google Scholar 

  14. Zhang M, Liu H, Song Z, Ma T, Xie J (2020) Self-assembling NiCo2S4 nanorods arrays and T-Nb2O5 nanosheets/three-dimensional nitrogen-doped garphene hybrid nanoarchitectures for advanced asymmetric supercapacitor. Chem Eng J 392:123669

    Article  CAS  Google Scholar 

  15. Hussain S, Javed MS, Asim S et al (2020) Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int 46:6406–6412

    Article  CAS  Google Scholar 

  16. Shen Y, Zhang K, Chen B, Yang F, Xu K, Lu X (2019) Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors. J Colloid Interf Sci 557:135–143

    Article  CAS  Google Scholar 

  17. Lan Y, Zhao H, Zong Y et al (2018) Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10:11775–11781

    Article  CAS  Google Scholar 

  18. Cai D, Wang D, Liu B et al (2014) Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Inter 6:5050–5055

    Article  CAS  Google Scholar 

  19. Chavan HS, Hou B, Ahmed ATA et al (2018) Ultrathin Ni–Mo oxide nanoflakes for high-performance supercapacitor electrodes. J Alloy Compd 767:782–788

    Article  CAS  Google Scholar 

  20. Wang X, Tian S, Zhang X et al (2019) 3D Ni3S2@Mn–Co–OH cross-linked nanosheets on Ni foam for high performance supercapacitor. Ionics 25:5485–5494

    Article  CAS  Google Scholar 

  21. Gao M, Le K, Xu D et al (2019) Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor. J Alloy Compd 804:27–34

    Article  CAS  Google Scholar 

  22. Feng X, Huang Y, Li C et al (2019) Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim Acta 308:142–149

    Article  CAS  Google Scholar 

  23. Zhu D, Sun X, Yu J et al (2019) Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage. J colloid interf sci 557:76–83

    Article  CAS  Google Scholar 

  24. Dong T, Li M, Wang P, Yang P (2018) Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. Int J Hydrog Energy 43:14569–14577

    Article  CAS  Google Scholar 

  25. Chodankar NR, Selvaraj S, Ji S-H, Kwon Y, Kim D-H (2019) Interface-engineered nickel cobaltite nanowires through NiO atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15:1803716

  26. Liu M-C, Kong L-B, Lu C et al (2013) Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1:1380–1387

    Article  CAS  Google Scholar 

  27. Guo X, Wang T, Zheng TX et al (2018) Quasi-parallel arrays with a 2D-on-2D structure for electrochemical supercapacitors. J Mater Chem A 6:24717–24727

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhang H, Zhang X et al (2016) Facile synthesis of hierarchical CoMoO4@NiMoO4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Mater Chem A 4:18578–18584

    Article  CAS  Google Scholar 

  29. Wang L, Duan G, Zhu J, Chen S-M, Liu X (2016) High capacity supercapacitor material based on reduced graphene oxide loading mesoporpus murdochite-type Ni6 MnO8 nanospheres. Electrochim Acta 219:284–294

    Article  CAS  Google Scholar 

  30. Patil SJ, Dubal DP, Lee D-W (2020) Gold nanoparticles decorated rGO–ZnCo2O4 nanocomposite: a promising positive electrode for high performance hybrid supercapacitors. Chem Eng J 379:122211

    Article  CAS  Google Scholar 

  31. Yus J, Bravo Y, Sanchez-Herencia AJ, Ferrari B, Gonzalez Z (2019) Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance. Electrochim Acta 308:363–372

    Article  CAS  Google Scholar 

  32. Long D, Liu H, Yuan Y, Li J, Li Z, Zhu J (2019) A facile and large-scale synthesis of NiCo-LDHs@rGO composite for high performance asymmetric supercapacitors. J Alloy Compd 805:1096–1105

    Article  CAS  Google Scholar 

  33. Xu J, Sun Y, Lu M et al (2018) Fabrication of hierarchical MnMoO4·H2O@MnO2 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 334:1466–1476

    Article  CAS  Google Scholar 

  34. Zhang G, Wang T, Yu X, Zhang H, Duan H, Lu B (2013) Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2:586–584

    Article  CAS  Google Scholar 

  35. Yu W, Li J, Herng TS et al (2019) Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv Mater 31:1903779

    Article  CAS  Google Scholar 

  36. Xu J, Sun Y, Lu M, Wang L, Zhang J, Liu X (2018) One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci China Mater 62:699–710

    Article  Google Scholar 

  37. Zhang Y, Cao N, Szunerits S, Addad A, Roussel P, Boukherroub R (2019) Fabrication of ZnCoS nanomaterial for high energy flexible asymmetric supercapacitors. Chem Eng J 374:347–358

    Article  Google Scholar 

  38. Zhou P, Wang C, Liu Y et al (2018) Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance. Chem Eng J 351:119–126

    Article  CAS  Google Scholar 

  39. Neeraj NS, Mordina B, Srivastava AK, Mukhopadhyay K, Prasad NE (2019) Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Appl Surf Sci 473:807–819

    Article  CAS  Google Scholar 

  40. Wang F, Long Y, Zong J, Zhao M, Yang S, Song X (2019) Three-dimensional nanocomposites with Co3O4 nanosheets parallelly embedded in carbon network walls for enhanced lithium-ion storage. Dalton Trans 48:8375–8383

    Article  CAS  Google Scholar 

  41. Liu B, Kong D, Zhang J et al (2016) 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J Mater Chem A 4:3287–3296

    Article  CAS  Google Scholar 

  42. Guo D, Song X, Tan L, Ma H et al (2019) Hierarchical structured Ni3S2@rGO@NiAl-LDHs nanoarrays: a competitive electrode material for advanced asymmetrical supercapacitors. ACS Sustain Chem Eng 7:2803–2810

    Article  CAS  Google Scholar 

  43. Yang L, Huang M, Lu M et al (2019) Facile design and synthesis of nickle-molybdenum oxide/sulfide composites with robust microsphere structure for high-performance supercapacitors. Chem Eng J 364:462–474

    Article  CAS  Google Scholar 

  44. Li J, Zhang P, Zhao X et al (2019) Structure-controlled Co–Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. J Colloid Interf Sci 549:236–245

    Article  CAS  Google Scholar 

  45. Xia XH, Tu JP, Zhang YQ, Wang XL et al (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6:5531–5538

    Article  CAS  Google Scholar 

  46. Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2017) Layered Ni(OH)2–Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci Rep 7:39980

    Article  CAS  Google Scholar 

  47. Wu X, Huang B, Wang Q, Wang Y (2020) High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration. Chem Eng J 380:122456

    Article  CAS  Google Scholar 

  48. Jia H, Wang Z, Zheng X et al (2018) Interlaced Ni–Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem Eng J 351:348–355

    Article  CAS  Google Scholar 

  49. Li Q, Liang C-L, Lu X-F, Tong Y-X, Li G-R (2015) Ni@NiO core–shell nanoparticle tube arrays with enhanced supercapacitor performance. J Mater Chem A 3:6432–6439

    Article  CAS  Google Scholar 

  50. Huang F, Meng R, Sui Y et al (2018) One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. J Alloy Compd 742:844–851

    Article  CAS  Google Scholar 

  51. Shrestha KR, Kandula S, Rajeshkhanna G, Srivastava M, Kim NH, Lee JH (2018) An advanced sandwich-type architecture of MnCo2O4@N–C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. J Mater Chem A 6:24509–24522

    Article  CAS  Google Scholar 

  52. Meng S, Wang Y, He J et al (2020) Nanowire-assembled Co3O4@NiS core–shell hierarchical with enhanced electrochemical performance for asymmetric supercapacitors. Nanotechnology 31:295403

    Article  CAS  Google Scholar 

  53. Han D, Zhao Y, Shen Y, Wei Y, Mao L, Zeng G (2020) Co3O4 nanowire@ultrathin Ni–Co layered double hydroxide core-shell arrays with vertical transfer channel for high-performance supercapacitor. Electroanaly Chem 859:113887

    Article  CAS  Google Scholar 

  54. Hu Q, Jiang X, He M, Zheng Q, Lam KH, Lin D (2020) Core–shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. Electrochim Acta 338:135896

    Article  CAS  Google Scholar 

  55. Yu L, Shi N, Liu Q et al (2014) Facile synthesis of exfoliated Co–Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes. Phys Chem Chem Phys 16:17936–17942

    Article  CAS  Google Scholar 

  56. Wang P, Li Y, Li S, Liao X, Sun S (2017) Water-promoted zeolitic imidazolate framework-67 transformation to Ni–Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J Mater Sci: Mater El 28:9221–9227

    CAS  Google Scholar 

  57. Teng Y, Huo Y-q, Li S-t, Niu X-m, Fan N, Su Z-m (2019) A zipper-like NiCo2O4/Ni(OH)2 growing on multifunctional nickel foam with excellent capacitive performance. J Alloy Compd 784:712–719

    Article  CAS  Google Scholar 

  58. Zhao B, Zhang B, Lu C, Cai Z, Li L (2020) Hierarchical hollow nanocages of Ni–Co amorphous double hydroxides for high-performance asymmetric supercapacitors. J Alloy Compd 833:155130

    Article  CAS  Google Scholar 

  59. Liang M, Zhao M, Wang H, Shen J, Song X (2018) Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J Mater Chem A 6:2482–2493

    Article  CAS  Google Scholar 

  60. Liu Y, Su D, Sang Z, Su X, Chen H, Yan X (2019) High-performance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochim Acta 328:135088

    Article  CAS  Google Scholar 

  61. Deng X, Zhou Q, Huang H et al (2019) Hierarchical NiCoO2@Ni3S2 core/shell nanoflakes arrays with superior capacitive performances for energy storage. Appl Surf Sci 495:143557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D121100), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (Grant No. 201802033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haicheng Xuan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, H., Wang, R., Yang, J. et al. Synthesis of NiMoO4@Co3O4 hierarchical nanostructure arrays on reduced graphene oxide/Ni foam as binder-free electrode for asymmetric supercapacitor. J Mater Sci 56, 9419–9433 (2021). https://doi.org/10.1007/s10853-021-05902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05902-5

Navigation